Download presentation
Presentation is loading. Please wait.
Published byΑδελφά Κουντουριώτης Modified over 5 years ago
1
Symbol Interleaving for Single Carrier PHY in 802.11aj (45 GHz)
Date: Presenter: Shiwen HE Authors/contributors:
2
Abstract This presentation describes symbol interleaving for SC PHY in aj (45 GHz). With the proposed symbol interleaving mechanism, the performance can be improved up to 2 dB.
3
Introduction In 802.11n/ac , bit interleaving is combined with BCC to
protect against consecutive bits burst errors, especially caused by frequency selective fading. In ac, symbol interleaving is combined with LDPC, since without symbol interleaving, the full frequency diversity cannot be achieved if the length of one LDPC codeword is less than the number of code bits per OFDM symbol ( i.e. LCW < NCBPS ). Symbol interleaving would be used for SC PHY in aj (45 GHz), since LDPC has a stronger ability to correct discrete errors than BCC, so that bit interleaving is not necessary. symbol interleaving can protect against burst errors by discretizing these errors at the transmitter and correcting them at the receiver.
4
Symbol Interleaving Mechanism(1/2)
Block interleaving is proposed to use for SC PHY in aj (45 GHz). where Parameters: NROW NCBPB NBLKS NSS NDSPB number of rows of interleaving matrix number of coded bits per block number of blocks number of spatial streams number of data symbols per block
5
Symbol Interleaving Mechanism(2/2)
Block interleaving would be implemented with a matrix of size for each block of each stream, by writing row-wise and reading back column-wise. Example: BW = 540 MHz, NDSPB = 256, NROW = 8, NSS = 1 Write Read 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
6
Interleaving Depth NROW (1/2)
For each bandwidth, it would be desirable to have a NROW which is at least as large as , so that one LDPC codeword covers the whole block. an integer divisor of the number of symbols per block. Potential parameters For BW = 540MHz, Modulation = 64 QAM, NSS = 4, NCBPB = 256*6 = 1536, NCBPB/LCW = 1536*4/672 = 9.14, so the potential values for NROW are: 16, 32, 64, 128. For BW = 1080 MHz, Modulation = 64 QAM, NSS = 4, NCBPB = 512*6 = 3072, NCBPB/LCW = 3072*4/672 = 18.29, so the potential values for NROW are: 32, 64, 128, 256.
7
Interleaving Depth NROW (2/2)
For each simulation, the best two NROW values are found and selected into optional parameter set, and the first/second element in the optional parameter set corresponds to the best/second best parameter. For each bandwidth, the intersection set of the optional parameter sets will be achieved. For each bandwidth, the element in the intersection which leads to the best performance for most simulation situations is proposed to be the optimal NROW .
8
Simulation Setup Packet length: 4096 bytes
Number of distinguishable paths: 18 Simulation antennas: 1x1, 2x2, 4x4 for 1, 2, 4ss, respectively Modulation and code rate: {QPSK ½},{16 QAM ½}, {64 QAM ½} 5000 channel realizations for each PER curve
9
Simulation Results Simulation results show that using symbol interleaving for SC PHY can achieve up to 2 dB gain. Proposed optional parameter set for 540 MHz Using the same method, optional parameter set for 1080 MHz can be obtained. Appendix-A gives simulation results for 540 MHz bandwidth. Parameters NSS = 1 NSS = 2 NSS = 4 {QPSK ½} {16,32} {16,64} {16 QAM ½} {64 QAM ½} Notes: Since the performances of all NROW for low-order modulations are very close, their optional parameters sets could be ignored which are marked as “\” in the table.
10
Conclusions Symbol interleaving should be used for SC PHY in aj (45 GHz). Interleaving depth NROW for SC PHY in aj (45 GHz) BW 540 MHz 1080 MHz NROW 16 32
11
Reference [1] “ ac-interleaver-for-nss-greater-than-4”, Yonghong Qi et al. [2] “ af-interleaver-parameters”, Ron Porat et al. [3]“Required Interleaving Depth in Rayleigh Fading Channels”, King Ip Chan et al. [4]“ Draft P802.11ac_D5.1”
12
Simulation Results for 540 MHz Bandwidth
APPENDIX A: Simulation Results for 540 MHz Bandwidth
13
Optional parameter set is {16,32}
0.3 dB gain
14
Optional parameter set is {16,32}
0.3 dB gain
15
Optional parameter set is {16,32}
0.2 dB gain
16
Optional parameter set is {16,32}
0.5 dB gain
17
Optional parameter set is {16,32}
1.5 dB gain Optional parameter set is {16,32}
18
Optional parameter set is {16,64}
0.2 dB gain
19
Optional parameter set is {16,32}
0.9 dB gain Optional parameter set is {16,32}
20
Optional parameter set is {16,32}
2 dB gain Optional parameter set is {16,32}
21
Thanks for Your Attention.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.