Presentation is loading. Please wait.

Presentation is loading. Please wait.

Supplemental slides for CSE 327 Prof. Jeff Heflin

Similar presentations


Presentation on theme: "Supplemental slides for CSE 327 Prof. Jeff Heflin"— Presentation transcript:

1 Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 18 – Learning Supplemental slides for CSE 327 Prof. Jeff Heflin

2 Decision Tree Learning
function Dec-Tree-Learn(examples,attribs,parent_examples) returns a decision tree if examples is empty then return Plurality-Value(parent_examples) else if all examples have the same classification then return the classification else if attribs is empty then return Plurality-Value (examples) else A  argmaxaattribs Importance(a, examples) tree  a new decision tree with root test A for each value vk of A do exs  {e : e  examples and e.A = vk} subtree  Dec-Tree-Learn (exs,attribs – A, examples) add a branch to tree with label (A = vk) and subtree subtree return tree From Figure 18.5, p. 702

3 Decision Tree Data Set Example Color Size Shape Goal Predicate X1 blue
small square no X2 green large triangle X3 red circle yes X4 X5 yellow X6 X7 X8

4 Decision Tree Result Shape? No No Color? Yes No Yes Yes
+: X3,X6 -: X1,X2,X4,X5,X7,X8 Shape? circle square triangle +: -: X2,X7 +: -: X1,X4,X8 +: X3,X6 -: X5 No No Color? green red yellow blue +: X3,X6 -: +: -: X5 +: -: +: -: Yes No Yes Yes

5 Alternate Decision Tree
+: X3,X6 -: X1,X2,X4,X5,X7,X8 What if Size was the first attribute? Size? small large +: X3 -: X2,X7 +: X6 -: X1,X4,X5,X8 Color? Shape? red yellow blue green circle square triangle +:X6 -:X8 +: -: X5 +: -: X1 +: -: X4 +: X3 -: +: -: +: -: X2,X7 Shape? No No No Yes No No circle square triangle +: X6 -: +: -: X8 +: -: Yes No No

6 A Neuron

7 Perceptron Learning function Perceptron-Learning(examples,network) returns a perceptron hypothesis inputs: examples, a set of examples with input x and output y network, a perceptron with weights Wj and activation function g repeat for each example (x,y) in examples do Err  y – g(in) for each j in 0..n Wj  Wj +   Err  g’(in)  xj until some stopping criteria is satisfied return Neural-Net-Hypothesis(network)

8 Perceptron Training Example
-1 W0=0.2 W1= -0.2 W2= 0.3 Training Set X1 X2 Y 1 =0.1 Epoch Ex X0 W0 X1 W1 X2 W2 in out Y Err W0 W1 W2 1 -1 0.2 -0.2 0.3 -0.1 0.1*1*-1 0.1*1*1 2 0.1 0.4 0.1*-1*-1 0.1*-1*0 0.1*-1*1 3 0.1*0*-1 0.1*0*0 4 -0.3 0.1*0*1 -0.4 = W1X1 + W2X2 – W0 = f(in) = Y - out = *Err*Xi

9 NETTalk /r/ … … O _ A R E _ Y 26 output units one layer of
80 hidden units 7x29 input units O _ A R E _ Y

10 ALVINN 30 output units 5 hidden units 1 input pixel
Straight ahead Sharp right Sharp left 30 output units 5 hidden units 1 input pixel Pictures from Tom Mitchell’s Machine Learning book slides Input is 30x32 pixels = 960 values

11 SVM Kernels Non-linear separator in 2 dimensions:
Mapped to 3 dimensions


Download ppt "Supplemental slides for CSE 327 Prof. Jeff Heflin"

Similar presentations


Ads by Google