Download presentation
Presentation is loading. Please wait.
Published byLionel Cole Modified over 5 years ago
1
Fig. 2 Recovery of quantum adiabaticity by adding energy gap fluctuations.
Recovery of quantum adiabaticity by adding energy gap fluctuations. (A) The energies of instantaneous eigenstates, the real and imaginary parts of eiϕ1,2, ϵ1,2(λ), and the measured projections (dots) of the system state on the ∣x〉, ∣y〉, or ∣z〉 states. The results are the same as those in Fig. 1 (E and F) where the energy gap Ω(λ) = Ω0[2 + cos (Ω0λT)]. (B and C) Same as (A) but changing the energy gap to Ω(λ) → 1.1Ω(λ) and Ω(λ) → 0.8Ω(λ), respectively, by adding an amplitude bias in the control field of the experiments. The fluctuation in the energy gap induces random modulation on the function eiϕ1,2. The destructive interference on eiϕ1,2 leads to a smaller average ϵ1,2(λ) and hence improved quantum adiabatic evolution. In (A), the cyan dashed line in the plot of ϵn,m(λ) shows the line J2(1)λ ≈ 0.115λ. Kebiao Xu et al. Sci Adv 2019;5:eaax3800 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.