Download presentation
Presentation is loading. Please wait.
Published byRonan Oldford Modified over 10 years ago
1
Mechanisms of Alkenes Electrophilic Addition Reactions
2
Understanding the basics… Mechanisms are the most mind-boggling part of organic chemistry. Students, generally speaking, have spent their time memorizing their way through science courses. Mechanisms require a student to actually UNDERSTAND the fundamentals of electron flow…
3
Everyone knows that electrons are negatively charged. Everyone knows that electrons are attracted to things with positive charges. Yet, the understanding of a mechanism remains elusive to many students… Lets review the basics…
4
Electron flow is always from the electron-rich to the electron-poor species. The electron-rich species is a Lewis Base (must have a lone pair) and is called the nucleophile. The electron-poor species is a Lewis Acid (must have empty orbital) and is called the electrophile.
5
SO – electron flow is always from Nucleophile to Electrophile. Watch the direction of your arrows – from lone pairs to carbocation… – or anion to cation… – or anion to partial positive charge… – or alkene pi bond to cation or partial positive charge…
6
When working through a mechanism, the goal is NOT to memorize the steps of a mechanism OF A SPECIFIC MOLECULE– when you do that, typically you become too focused on the structures provided in one example. When that happens, you get confused when the next mechanism problem has a DIFFERENT structure.
7
What you want to do is break down the steps of the mechanism, into little parts or steps. These basic little steps can be memorized. By knowing the steps, you know how the mechanism progresses, regardless of the structure you are given to work with. SO – break them down…
8
Dehydration of Alcohols Identify this mechanism – Starts with alcohol, ends with alkene…
9
Dehydration of Alcohols Steps Involved: – Convert –OH to H 2 O – Loss of H 2 O and Carbocation formation – Removal of H +, resulting in formation of pi bond to complete conversion to alkene
10
Dehydration of Alcohols Step 1: Convert –OH to H 2 O
11
Dehydration of Alcohols Step 2: Loss of H 2 O (spontaneous dissociation) to form carbocation
12
Dehydration of Alcohols Step 3: Removal of H +, resulting in formation of pi bond to complete conversion to alkene
13
Acid-Catalyzed Hydration Identify this mechanism – Starts with alkene, ends with alcohol…
14
Acid-Catalyzed Hydration Steps Involved: – Reaction of pi bond with H + (acid cat.) resulting in Carbocation formation – Addition of H 2 O – Removal of extra proton (H + ) to finish formation of –OH.
15
Acid-Catalyzed Hydration Step 1: Reaction of pi bond with H + (acid cat.) resulting in Carbocation formation
16
Acid-Catalyzed Hydration Step 2: Addition of H 2 O
17
Acid-Catalyzed Hydration Step 3: Removal of extra proton (H + ) to finish formation of –OH.
18
Addition of H-X Identify this mechanism – Starts with alkene, ends with single halide…
19
Addition of H-X Steps Involved: – Reaction of pi bond with H + (of H-X), concurrent separation of X -, and formation of carbocation intermediate. – Attack of X - to finish formation of product.
20
Addition of H-X Step 1: Reaction of pi bond with H + (of H- X), concurrent separation of X -, and formation of carbocation intermediate.
21
Addition of H-X Step 2: Attack of X - to finish formation of product.
22
Addition of X 2 Identify this mechanism – Starts with alkene, ends with two halides…
23
Addition of X 2 Steps Involved: – Attack by pi bond on polarized X-X with Halonium Ion formation – Attack of X - to pop open three-membered ring and finish formation of product.
24
Addition of X 2 Step 1: Attack by pi bond on polarized X- X with Halonium Ion formation
25
Addition of X 2 Step 2: Attack of X - to pop open three- membered ring and finish formation of product.
26
Addition of X 2 Of course, you can attack the other end of the halonium and open in the other direction…
27
Addition of X 2 and H 2 O Identify this mechanism – Starts with alkene, ends with one alcohol and one halide…
28
Addition of X 2 and H 2 O Steps Involved: – Attack by pi bond on polarized X-X with Halonium Ion formation – Attack by H 2 O to pop open three- membered ring. – Removal of extra proton (H + ) by X - to complete the formation of –OH.
29
Addition of X 2 and H 2 O Step 1: Attack by pi bond on polarized X- X with Halonium formation
30
Addition of X 2 and H 2 O Step 2: Attack by H 2 O to pop open three- membered ring.
31
Addition of X 2 and H 2 O Step 3: Removal of extra proton (H + ) by X - to complete the formation of –OH.
32
AND REMEMBER… If you UNDERSTAND the basic steps to these mechanisms, it wont matter what the double bond in the molecule looks like... Every alkene reacts the same way, every time, regardless of whats attached…
33
Finally… Track the pieces you need to add or subtract overall… See where you are starting and where you are ending… Dont memorize a specific molecule but go ahead and memorize the sequence of steps involved… it wont matter what the alkene looks like if you approach it this way…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.