Download presentation
Presentation is loading. Please wait.
1
Chapter 3-2 Discrete Random Variables
主講人:虞台文
2
Content Functions of a Single Discrete Random Variable
Discrete Random Vectors Independent of Random Variables Multinomial Distributions Sums of Independent Variables Generating Functions Functions of Multiple Random Variables
3
Chapter 3-2 Discrete Random Variables
Functions of a Single Discrete Random Variable
4
計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數
5
這傢伙上車後我可以從他口袋掏多少錢(Y)?
隨機變數之函式亦為隨機變數。 Y = g(X) 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?
6
這傢伙上車後我可以從他口袋掏多少錢(Y)?
Y = g(X) 若pX(x)已知, pY(y)=? 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?
7
The Problem Y = g(X) and pX(x) is available.
8
這瓶十元 Example 17 這瓶只要五元 福氣啦!!!
9
這瓶十元 Example 17 這瓶只要五元 福氣啦!!!
10
這瓶十元 Example 17 這瓶只要五元 福氣啦!!!
11
Example 17
12
Example 18 n=10, p=0.2.
13
Example 18 n=10, p=0.2.
14
Example 18 n=10, p=0.2.
15
Pay 100$, #bottles (X3) obtained?
Example 18 n=10, p=0.2.
16
Example 18 n=10, p=0.2. Pay 100$, #bottles (X3) obtained?
Let Y (X3) denote #lucky bottles obtained.
17
Chapter 3-2 Discrete Random Variables
Discrete Random Vectors
18
Definition Random Vectors
A discrete r-dimensional random vector X is a function X: Rr with a finite or countable infinite image of {x1, x2, …}.
19
Example 19
20
1 Example 19
21
2 Example 19
22
pX(x) = P(X1 = x1, X2 = x2, … , Xr = xr),
Definition Joint Pmf Let random vector X = (X1, X2, …, Xr). The joint pmf (jpmf) for X is defined as pX(x) = P(X1 = x1, X2 = x2, … , Xr = xr), where x = (x1, x2, … , xr).
23
Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y
24
Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y
25
Properties of Jpmf's p(x) 0, x Rr;
{x | p(x) 0} is a finite or countably infinite subset of Rr;
26
Definition Marginal Probability Mass Functions
Let X = (X1, …, Xi , …, Xr) be an r-dimensional random vectors. The ith marginal probability mass function defined by
27
Example 21 Find pX(x) and pY (y) of Example 20. X Y
28
Example 21 Find pX(x) and pY (y) of Example 20. X Y
29
Example 22 X = # 4 Y = # pX,Y(x, y) = ? pX (x) = ? pY (y) = ?
30
Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)
31
Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)
32
Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)
33
Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)
34
Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)
35
Chapter 3-2 Discrete Random Variables
Independent Random Variables
36
Definition Let X1, X2, …, Xr be r discrete random variables having densities , respectively. These random variables are said to be mutually independent if their jpdf p(x1, x2, …, xr) satisfies
37
Example 23 Tossing two dice, let X, Y represent the face values of the 1st and 2nd dice, respectively. 1. pX,Y (x, y) = ?. 2. Are X, Y independent?
38
Example 23
39
Fact ? ? ?
40
Fact
41
Fact
42
Example 24 Consider Example 23. Find P(X 2, Y 4).
43
Example 24
44
Example 24
45
Example 24 Z1有何意義?
46
Example 24
47
Example 24
48
Example 24
49
Example 24 p’ p’
50
Example 24
51
Example 24 Fact: cdf pmf
52
Example 24
53
Example 24
54
Example 24
55
Chapter 3-2 Discrete Random Variables
Multinomial Distributions
56
Generalized Bernoulli Trials
A sequence of n independent trials. Each trial has r distinct outcomes with probabilities p1, p2, …, pr such that
57
Multinomial Distributions
Define X=(X1, X2, …, Xr) st Xi is the number of trials that resulted in the ith outcome. satisfies
58
Multinomial Distributions
Define X=(X1, X2, …, Xr) st Xi is the number of trials that resulted in the ith outcome. satisfies
59
Example 26 If a pair of dice are tossed 6 times, what is the probability of obtaining a total of 7 or 11 twice, a matching pair one, and any other combination 3 times? Three outcomes: 7 or 11 match others X1 #7 or 11; X2 #matches; X3 #others.
60
Chapter 3-2 Discrete Random Variables
Sums of Independent Variables Generating Functions
61
The Sum of Independent Random Variables
62
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z).
63
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n} n n z n z z n z
64
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n}
65
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n}
66
Probability Generating Functions
機率母函數 Probability Generating Functions Probabilities Probabilities
67
Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as:
68
Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as: x 2 1
69
Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as: x 2 1
70
Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).
71
Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).
72
Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).
73
Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).
74
Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p). Exercise
75
Important Generating Functions
76
Theorem 2 Sums of Independent Random Variables
Let X, Y be two independent, nonnegative integer-valued random variables. Then,
77
Theorem 2 Sums of Independent Random Variables
Pf) Let Z=X+Y.
78
Theorem 2 Sums of Independent Random Variables
Fact: and . . .
79
Example 29 Use pgf to recompute Example 27.
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Example 29 Use pgf to recompute Example 27.
80
Example 29 Use pgf to recompute Example 27.
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Example 29 Use pgf to recompute Example 27.
81
Theorem 3
82
Theorem 3 表何意義?
83
Theorem 3
84
Theorem 3 表何意義?
85
Theorem 3
86
Theorem 3 表何意義?
87
Theorem 3
88
Theorem 3 表何意義?
89
Theorem 3
90
Theorem 3 表何意義?
91
Theorem 3
92
熟記!!!請靈活的將它們用於解題 Theorem 3
93
Chapter 3-2 Discrete Random Variables
Functions of Multiple Random Variables
94
Functions of Multiple Random Variables
Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=?
95
Functions of Multiple Random Variables
Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=? Example: pX,Y(x, y) 已知 pU,V(u, v) = ? X $/month Y $/month
96
Functions of Multiple Random Variables
1-1 implies invertible. Functions of Multiple Random Variables Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=? Example: pX,Y(x, y) 已知 pU,V(u, v) = ?
97
Functions of Multiple Random Variables
1-1 implies invertible. Functions of Multiple Random Variables Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=?
98
Example 30 Let X~B(n, p1), Y~B(m, p2) be two independent random variables. U = X + Y V = X Y Let Find pU,V(u, v).
99
Example 30 Let X~B(n, p1), Y~B(m, p2) be two independent random variables. U = X + Y V = X Y Let Find pU,V(u, v). and
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.