Download presentation
Presentation is loading. Please wait.
1
Heat Q vs Work W and efficiency
Carnot cycle reversible Maximal efficiency depends on (TH -TC) Transformation of heat into work always involves losses (QC) 1824 Sadi Carnot ( )
2
Fundaments of thermodynamics
First law: conservation of energy U Rudolf Clausius Second law: transformations (processes) 1854 Äquivalenzwert der Verwandlung R. Clausius Philosophical Magazine, 12 (1856) p.81
3
Statistical thermodynamics: History
Daniel Bernouilli Hydrodynamica (1738): Heat = kinetic (movement) energy
4
Statistical thermodynamics: History
James Maxwell 1859: Maxwell distribution of velocities in gases
5
Statistical thermodynamics: History
Maxwell-Boltzmann distribution Boltzmann Transport Equation (BTE) Number of molecules with velocity v Ludwig Boltzmann 1896: Lectures on gas theory
6
Statistical thermodynamic Entropy
1877: Boltzmann entropy S measure for “statistical mixedupness” Ω number of micro states of a system in equilibrium as a macro state Ludwig Boltzmann
7
Statistical thermodynamic Entropy
Ω number of micro states of a system in equilibrium as a macro state Ludwig Boltzmann
8
Statistical thermodynamic Entropy
Ω number of micro states of a system in equilibrium as a macro state Max Planck Boltzmann constant
9
Statistical thermodynamic Entropy
S increases with temperature Ludwig Boltzmann
10
Statistical thermodynamic Entropy
Ludwig Boltzmann
11
Modern classical thermodynamics
Third law (Nernst) Hermann Walther Nernst
12
Statistical thermodynamics: History
Boltzmann distribution Average number of molecules with energy εi Erwin Schrödinger Quantum mechanics: discrete energy states εi
13
Statistical thermodynamics: History
Boltzmann distribution Chance of molecule to have energy εi Entropy of the system Erwin Schrödinger
15
Statistical thermodynamics: History
Boltzmann Transport Equation (BTE) Ludwig Boltzmann 1896: Lectures on gas theory
16
Statistical thermodynamic Entropy
Zentralfriedhof Vienna Ludwig Boltzmann
18
Statistical Thermodynamics : Boltzmann distribution
Two level system
19
Statistical Thermodynamics: Boltzmann distribution
21
Entropy change for changing volume
Reversible, isothermal, isochoric “compression” Rev., isothermal, isobaric expansion Irreversible, isothermal expansion
22
Boltzmann distribution for changing volume
X
23
Boltzmann entropy for changing volume
X low q q is a measure for the number of thermally accessible states high q
24
Two ways to change Boltzmann entropy
W: #micro-states Perfect atomic gas: Perfect atomic gas:
25
Two ways to increase Boltzmann entropy
(for 4 constant CV values)
26
Temperature dependence of the entropy
27
@ all T [Cl2(g)] @ 298 K Atkins: Table 2C.5 (T = 298 K) @ all T [Cu(s)] @ 298 K
28
@ 298 K @298 K Atkins: Table 2C.5 (T = 298 K) @298 K
30
Statistical Thermodynamics: First law
random (thermal) motion ordered motion
31
Statistical Thermodynamics: Second law
spontaneous process: energy dispersion ordered disordered motion non-spontaneous process: needs work disordered ordered motion
32
Stat. Thermo: reaction equilibria: T-dependence of K
endothermic exothermic
33
Stat. Thermo: reaction equilibria: Density of states ρ
34
Stat. Thermo: reaction equilibria: Density of states ρ
36
Stat. Thermo: reaction equilibria: P-dependence of K
Classical Thermodynamics: 1 2 Inert gas
37
Stat. Thermo: reaction equilibria: P-dependence of K
Statistical Thermodynamics: Boltzmann Distr. 1 2 Inert gas
39
Stat. Thermo: reaction equilibria: P-dependence of K
2 1 Dissociation equilibrium Classical Thermodynamics: (Perfect gases)
40
Stat. Thermo: reaction equilibria: P-dependence of K
2 1
41
Stat. Thermo: reaction equilibria: P-dependence of K
Statistical Thermodynamics: 2A V2 V1 A2 1 2
42
? Stat. Thermo: reaction equilibria: P-dependence of K
V2 V1 1 2 Boltzmann Distr. ? Too complicated Elective Stat. Thermod.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.