Download presentation
Presentation is loading. Please wait.
Published byThea Børresen Modified over 5 years ago
1
# 32 on next page!!!! 1 2 1 1 1 2 29. Step 1: Mass 1 goes down ramp
PE = KE mgh = 1/2 m v2 9.8(.3) = 1/2 v2 v = 2.42 m/s v1 - v2 = v21 - v11 = 2.42 = v21 - v11 Step 2: Elastic collision between the two masses Mass 1 collides with Mass 2 m2 = 0.5m1 m1v1 + m2v2 = m1v11 + m2v21 m1(2.42)+ 0= m1v m1v21 2.42 = v v21 Solve the two equations v11 = 0.81 m/s v21 = 3.23 m/s 1 Step 3: Motion in a Vertical Plane y = 1/2 gt2 0.9 = 1/2 (9.8) t2 t = 0.43 seconds 2 x = v1t x = 0.81(0.43) x = 0.35m 35cm for Mass 1 x = 3.23(0.43) x = 1.39m for Mass 2 # 32 on next page!!!! m1v12 = KE1 = 1/2 m1v12 = .5 m1v12 KE2 = 1/2(1.5 m1)(.67v1)2 = .34 m1v12 KE1 + KE2 = 7500 .5 m1v12 + .34 m1v12 = 7500 KE1 = .5 m1v12 KE2 = .34 m1v12 KE1 = .5 ( ) KE1 = J 4.46 kJ KE2 = .34( ) KE2 = J 3.04 kJ 34. m2 = 1.5 m1 m1v1 + m2v2 = 0 m1v m1v2 = 0 v1 = - 1.5v2 v2 = - v1/1.5 v2 = - .67v1
2
( ( ( ( θ If you can't memorize the formula can work it out
page Read example for formulas these are used for a ballistic pendulum you must know how to do this! θ L h Step 2 M m + L - h x v1 M m Step 1 L v Conservation of Momentum mv = (m+M)v1 Conservation of Energy KE = PE 1/2 (m+M)(v1)2 = (m+M)gh (v1)2 = 2(m+M)gh (m+M) (v1)2 = 2gh v1 = √2gh For Ballistic Pendulum v = m+M ( √2gh ( v = m+M (v1) m 230 = m ( ( √2(9.8)h .028 h = .16 m If you can't memorize the formula can work it out Conservation of Momentum mv = (m+M)v1 .028(230) = ( ) v1 v1 = 1.78 m/s Conservation of Energy KE = PE 1/2 (m+M)(v1)2 = (m+M)gh 1/2 ( ) (1.782) = ( ) (9.8) h h = .16 m L - h L = 2.8 L - h = x2 = 2.82 x = .93 m 93 cm L - h = 2.64 x
3
μ= 0.40 x1 v12 = x1 (-3v2)2 x1 (-3)2 35. v1 = 3.59v1 v1 = 23.79 m/s
m1v1 + m2v2 = (m1+ m2)v1 920v1+ 0= ( )v1 920v1 = 3300v1 Wf = KE (This is v1) μmgx = 1/2 mv2 .8(9.8)(2.8) = 1/2 v2 v = 6.63 m/s v1 = 3.59(6.63) v1 ≈ 52mph μ= 0.40 38. m1v1 + m2v2 = 0 v1 = - 3 v2 Wf = KE Mass 1 μm1gx1 = 1/2 m1v12 Mass 2 μ(3)m1gx2 = 1/2 (3)m1v22 x1 = v12 3x2 = 3v22 x2 = v22 x v12 x v22 = x1 (-3v2)2 x1 (-3)2 x2 x1 9
4
41. m1v1x + m2v2x = (m1+ m2)vx 4.3(7.8) + 0= ( )vx 33.54 = 9.9 v cosθ 3.39 = v cosθ x direction y direction m1v1y + m2v2y = (m1+ m2)vy (10.2) = ( )vy = 9.9 v sin θ 5.83 = v sin θ E1 E2 θ v1x E1+E2 v2y v v sin θ v cos θ tan θ = θ = v2 = v = 6.74 m/s v = 300 1.8 m/s 1.1 m/s 42. 1.1 cos 300 1.1 sin 300 a b mavax + mbvbx = mavax1 + mbvbx1 x direction mavay + mbvby = mavay1 + mbvby1 y direction .4(1.8) + 0 = .4(1.1 cos 300) + .5 vbx1 0 = .4(1.1 sin 300) + .5 vby1 vbx1 = .68 vby1 = -.44 θ .68 .44 = v2 v = .81 m/s tan θ = .44/.68 θ = v = 0.81 m/s below the + x axis v = 0.81 m/s @
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.