Download presentation
Presentation is loading. Please wait.
Published bySilvie Horáčková Modified over 5 years ago
1
2-6: Special Functions Direct Variation: A linear function in the form y = kx, where k Constant: A linear function in the form y = b Identity: A linear function in the form y = x Absolute Value: A function in the form y = |mx + b| + c (m 0) Greatest Integer: A function in the form y = [x]
2
Direct Variation Function: A linear function in the form y = kx, where k 0.
2 4 6 –2 –4 –6 x y y=2x
3
Constant Function: A linear function in the form y = b.
4
Identity Function: A linear function in the form y = x.
5
Absolute Value Function: A function in the form y = |mx + b| + c (m 0)
y=|x - 2|-1 Example #1 The vertex, or minimum point, is (2, -1).
6
Absolute Value Function: A function of the form y = |mx + b| +c (m 0)
y = -|x + 1| Example #2 The vertex, or maximum point, is (-1, 0).
7
Absolute Value Functions
Graph y = |x| - 3 by completing the t-table: x y -2 -1 1 2
8
Absolute Value Functions
Graph y = |x| - 3 by completing the t-table: x y y =|-2| -3= -1 y =|-1| -3= -2 y =|0| -3= -3 y =|1| -3= -2 y =|2| -3= -1 The vertex, or minimum point, is (0, -3).
9
Greatest Integer Function: A function in the form y = [x]
Note: [x] means the greatest integer less than or equal to x. For example, the largest integer less than or equal to -3.5 is -4. 2 4 6 –2 –4 –6 x y y=[x]
10
Greatest Integer Function: A function in the form y = [x]
Graph y= [x] + 2 by completing the t-table: x y y= [-3]+2=-1 y= [-2.75]+2=-1 y= [-2.5]+2=-1 y= [-2.25]+2=-1 y= [-2]+2 =0 y= [-1.75]+2=0 y= [-1.5]+2=0 y= [-1.25]+2=0 y= [-1]+2=1 y= [0]+2=2 y= [1]+2=3 x y -3 -2.75 -2.5 -2.25 -2 -1.75 -1.5 -1.25 -1 1 2 4 6 –2 –4 –6 x y
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.