Download presentation
Presentation is loading. Please wait.
Published byHadian Sutedja Modified over 5 years ago
1
3. Steady State Error and Time Response Performance
) s ( R Final Value Theorem: Parabolic input Step input Ramp input
2
) s ( R E(s): Laplace transform of the error G(s): Forward path transfer function Steady state error:
3
System type: Roots at s=0 of the denominator of the forward path transfer function denote the sytem type. Example: System type: 1 System type: 2 System type: 0 System type: 1
4
Position error coefficient
Step Input: Step input ) s ( R Position error coefficient System type: ess 1
5
Velocity error coefficient
Ramp Input: ) s ( R Ramp input Velocity error coefficient System type: ess 1 2
6
Acceleration error coefficient
Parabolic Input: Parabolic input ) s ( R Acceleration error coefficient System type: ess 1 2 3
7
Example 3.1 a) ) s ( R System type: 0 Stability test
Final value theorem: Step Ramp Parabolic ess: Step Ramp Parabolic [cn]ss: Step Ramp Parabolic System type: 0 Stability test
8
Integral control improves the steady state error performance
Example 3.1 b) ) s ( R ess: Step Ramp Parabolic System type: 1 Integral control improves the steady state error performance ess: Step Ramp Parabolic System type : 0 Derivative control does not change the error performance
9
Example 3.1 d) ) s ( R System type: 2 DcDp s0 System type: 0
ess: Step Ramp Parabolic System type: 2 DcDp s0 System type: 0 Overshoot DcDp s1 System type: 1 DcDp s2 System type: 2 DcDp s3 System type: 3
10
Example 3.2: ) s ( R System type: 0 ess: Step Ramp Parabolic Stability
11
Integral control improves the steady state error performance
Example 3.3 : ) s ( R Sistem tipi: 1 Integral control improves the steady state error performance ess: Step Ramp Parabolic
12
Derivative control does not change the error performance
Örnek 3.4 : ) s ( R Sistem tipi: 0 ess: Step Ramp Parabolic Derivative control does not change the error performance
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.