Download presentation
Presentation is loading. Please wait.
1
Alpha decay half-lives of even-even superheavy elements
报告人:王永佳 指导老师:张鸿飞 兰州大学核科学与技术学院 第13届核结构讨论会 内蒙古赤峰学院
2
Outline Summary Introduction Generalized Liquid Drop Model (GLDM)
Numerical results and discussions Summary
3
Introduction In 1911, Geiger -Nuttall law: Difference:
In 1928, G. Gamow created the QM theory of alpha decay. 1928 In 1928, W. Gurney and U. Condon obtained a general idea of the mysterious instability of the nucleus. Difference: Gurney and Condon argued that the same QM tunneling analysis should also be applicable to beta decay, whereas Gamow already knew that beta decay posed a much deeper theoretical challenge.
4
Various models Theoretical models: Semi-empirical formula:
Viola–Seaborg–Sobiczewski: G. Royer and H.F. Zhang : Theoretical models: Cluster model, DDCM , GDDCM GLDM, DDM3Y, unified fission model [Ref.] J. Phys. G: Nucl. Part. Phys. 35 (2008)
5
Introduction Superheavy elements Decay modes: alpha decay
and spontaneous fission Identification Dubna: 48Ca+249Bk ,294117 GSI : 48Ca+244Pu ,289114 [Ref.] Phys. Rev. Lett. 104(2010) [Ref.] Phys. Rev. Lett. 104(2010)
6
Our method Generalized liquid drop model (GLDM) Preformation factor
Assault frequency [For heavy even-even nuclei Z>82 and N>126] The standard deviation between the extracted data and the values obtained from this Eq. is only , implying that the average deviation between the theoretical estimates and the experimental data for alpha decay half-lives of heavy even-even nuclei will be = 1.45. [Ref.] wang yong-jia and zhang hong-fei at el. CHIN. Phys. Lett. 27(6)
7
Alpha decay energy [Ref.] T. Dong and Z. Ren, Phys. Rev. C 77, (2008). [Ref.] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C45(1992), 2247. [Ref.] E.L. Medeiros et al. , J. Phys. G 32(2006) B23.
8
Alpha decay energy The previously mentioned formula can be simplified:
Royer formula: [Ref.] G. Royer and H. F. Zhang Phys. Rev. C [Ref.] Jianmin Dong at el. Phys. Rev. C81(2010)064309
9
Compared with experimental data
AZ Qexp(MeV) QDong(MeV) T(exp.) T(cal.) 294118 11.81±0.06 11.718 0.89(+1.07/-0.31)ms 0.94ms 292116 10.80±0.07 10.810 18(+16/-6)ms 48.4ms 290116 11.00±0.0.08 11.087 7.1(+3.2/-1.7)ms 16.1ms 288114 10.09±0.07 10.164 0.69 (+0.17/-0.11)s 0.827s 286114 10.33±0.06 10.447 0.26s 0.18s 284112 SF 9.510 99(+24/-16)ms 29.34s 282112 9.799 0.82(+0.30/-0.18)ms 1.56s 270110 11.24±0.05 11.092 100(+140/-40)s 0.93s 266108 10.38±0.02 10.481 2.3(+1.3/-0.6)ms 2.32ms
10
Compared with experimental data
AZ Qexp(MeV) QDong(MeV) T(exp.) T(cal.) 264108 10.848 10.766 81s 20.5s 260106 9.92±0.03 10.155 9.5(+2/-2)ms 8.1ms 260104 8.947 8.935 1s 0.846s 258104 9.296 9.238 92ms 82.5ms 256104 8.966 9.109 0.304s 0.596s Experimental Data come from: Yu. Ts. Oganessian et al., Phys. Rev. C 69, (R) (2004);70, (2004); 72, (2005); 74, (2006); 76, (R) (2007) and G. Audi et al. Nucl. Phys. A 729 (2003) 3.
11
Superheavy elements Cold fusion:Z<113 Hot fusion:48Ca, 56Fe :
Dubna: Ca+Pu,Am,Cm,Bk,Cf GSI: Ca+Pu Ds---277Hs+alpha Future: Ca + Md Fe + Md Nuclei which Z<127 would be synthesized in the near future.
12
Alpha decay and spontaneous fission
Phys. Rev. C78(2008) For 45 nuclei Region from 232Th to
13
Very long SF half-life, why?
Z. Ren, et al. NPA 759 (2005) 64. Chang Xu, et al. PRC78 (2008) K.P. Santhosh et al. NPA832(2010)220
14
Summary We improved the assault frequency in the GLDM.
The improved model agrees with the experimental data of heavy nuclei within a factor of 2. General predictions
15
Thanks for your attention!
Thanks for the organizer of this conference!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.