Download presentation
Presentation is loading. Please wait.
Published byBenny Lesmono Modified over 5 years ago
1
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin
2
Goal-Based Agent Environment Agent sensors State
What the world is like now How the world evolves Environment What it will be like if I do action A What my actions do What action I should do now Goals actuators Agent From Fig. 2.13, p. 50
3
Knowledge-Based Agent
function KB-AGENT(percept) returns an action static: KB, counter t=0 TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action ASK(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) t t + 1 return action From Figure 7.1, p. 196
4
Grammar for Propositional Logic
Sentence AtomicSentence | ComplexSentence AtomicSentence True | False | Symbol Symbol P | Q | R | … ComplexSentence Sentence | (Sentence Sentence) | (Sentence Sentence) | (Sentence Sentence) | (Sentence Sentence) From Figure 7.7, p. 205
5
Inference via Model Checking
function TT-ENTAILS?(KB, ) returns true or false symbols a list of the proposition symbols in KB and return TT-CHECK-ALL(KB, , symbols, []) function TT-CHECK-ALL(KB, , symbols, model) returns true or false if EMPTY?(symbols) then if PL-TRUE?(KB, model) then return PL-TRUE?(, model) else return true else do P FIRST(symbols); rest REST(symbols) return TT-CHECK-ALL(KB, , rest, EXTEND(P,true,model)) and TT-CHECK-ALL(KB, , rest, EXTEND(P,false,model)) From Figure 7.4, p. 209
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.