Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up What are the zeros of the function?

Similar presentations


Presentation on theme: "Warm Up What are the zeros of the function? "β€” Presentation transcript:

1 Warm Up What are the zeros of the function? 𝑓 π‘₯ =π‘₯(π‘₯+2)(π‘₯βˆ’5)

2 3.4 Evaluating and Graphing Polynomials
𝑓 π‘₯ = π‘₯ 4 βˆ’ 2π‘₯ 2 +π‘₯ EQ: How do you sketch the graph of a polynomial using relative mins, and maxs and end behavior?

3

4 Number of Zeros POSSIBLE Number of Relative Max/Min POSSIBLE
Polynomial of degree Number of Zeros POSSIBLE Number of Relative Max/Min POSSIBLE TWO ONE THREE N N – 1

5 Exit Ticket How many relative max/mins and zeros could a polynomial of degree 4 have?

6 Warm Up Domain: Range: Y-intercept: Zeros: # Relative maximums:
# Relative minimums: # Absolute maximums: # Absolute minimums: Endpoint behavior:

7 Relative Maximum and Minimums are the β€œturning points” in a graph.
Absolute Maximum and Minimums are the definitive highest/lowest point of the graph. Absolute maximums and minimums occur only in even functions.

8 B A D C E Relative Maximum: Relative Minimum: Absolute Maximum:
Absolute Minimum: B A D C E

9 Standard Form (Quadratic) Standard Form (Polynomial of n degree)
𝒇 𝒙 = 𝒂𝒙 𝟐 +𝒃𝒙+𝒄 Standard Form (Polynomial of n degree) 𝑃 π‘₯ = π‘Žπ‘₯ 𝑛 + 𝑏π‘₯ π‘›βˆ’1 + 𝑐π‘₯ π‘›βˆ’2 …𝑑

10 The Domain and Range The Y-intercept: (0,c) The X-intercepts (the Zeros, aka Roots): (x,0) End Behavior Minimum or Maximum a. Relative and Absolute min/max Intervals of increase or decrease

11 β€œEven” Functions (n is even)
π‘Žπ‘₯ 𝑛 Domain: (βˆ’βˆž,∞) Range: [π’Žπ’Šπ’,∞) End Behavior: 𝐚𝐬 𝐱 β†’βˆ’βˆž, π’š β†’ ∞ 𝐚𝐬 𝐱 β†’βˆž, π’š β†’ ∞ βˆ’π‘Žπ‘₯ 𝑛 Domain:(βˆ’βˆž,∞) Range: (βˆ’βˆž,π’Žπ’‚π’™] 𝐚𝐬 𝐱 β†’βˆ’βˆž, π’š β†’βˆ’βˆž 𝐚𝐬 𝐱 β†’βˆž, π’š β†’βˆ’βˆž β€œOdd” Functions (m is odd) 𝑏π‘₯ π‘š Range: (βˆ’βˆž,∞) βˆ’π‘π‘₯ π‘š

12 Example 1 Graph f(x) by using the zeros. 𝑓 π‘₯ =π‘₯(π‘₯+2)(π‘₯βˆ’5)

13 Example 2 Zeros: Degree:

14 Example 2 Zeros: -1, 1, 2 Degree: 4 𝑃 π‘₯ = π‘₯ π‘₯βˆ’1 π‘₯βˆ’2 Multiplicity is how many times π‘₯βˆ’π‘Ž appears as a factor.

15 Example 3 What is the multiplicity of each zero? π‘₯(π‘₯βˆ’2) 2 π‘₯ 2 (π‘₯+2)(π‘₯βˆ’4) π‘₯βˆ’2 2 (π‘₯βˆ’1)

16 Example 2 What is the multiplicity of each factor? π‘₯(π‘₯βˆ’2) 2 π‘₯ 2 (π‘₯+2)(π‘₯βˆ’4) π‘₯βˆ’2 2 (π‘₯βˆ’1) Zeros: x= 1 (multiplicity 1), 2 (multiplicity 2) Zeros: x= 0 (multiplicity 2), -2 (multiplicity 1), 4 (multiplicity 1) Zeros: x= 2 (multiplicity 2), 1 (multiplicity 1)

17 Exit Ticket Write a polynomial function f in standard form that has 5 and -3 as zeros of multiplicity 1 and 2, respectively P(x)=

18 Warm Up Use the zeros, max/mins, end behavior, domain, range and y intercept? Then find the Polynomial expression. Zeros: End Behavior: Domain: Range: Y-intercept: Max and min: 𝑃 π‘₯ =

19 Practice Problems Graph the given polynomials 1.) 𝑃 π‘₯ =π‘₯ 2 (π‘₯+1)(π‘₯βˆ’2) 2.) 𝑃 π‘₯ =(π‘₯βˆ’1)(π‘₯+1)(π‘₯βˆ’3) 3.) 𝑃 π‘₯ = π‘₯βˆ’3 2 (2π‘₯βˆ’1)(π‘₯+1)

20 Practice Problems Create the polynomial expression, in standard form, of the given graph?

21 Exit Ticket


Download ppt "Warm Up What are the zeros of the function? "

Similar presentations


Ads by Google