Presentation is loading. Please wait.

Presentation is loading. Please wait.

Instabilities in the Forced Truncated NLS

Similar presentations


Presentation on theme: "Instabilities in the Forced Truncated NLS"— Presentation transcript:

1 Instabilities in the Forced Truncated NLS
Eli Shlizerman and Vered Rom-Kedar Weizmann Institute of Science 1. ES & RK, Characterization of Orbits in the Truncated NLS Model, ENOC-05 2. ES & RK, Hierarchy of bifurcations in the truncated and forced NLS model, CHAOS-05 3. ES & RK, Energy surfaces and Hierarchies of bifurcations - Instabilities in the forced truncated NLS, Cargese-03 SNOWBIRD, 2005

2 Near-integrable NLS Conditions Parameters
(+) focusing dispersion Conditions Periodic Boundary u (x , t) = u (x + L , t) Even Solutions u (x , t) = u (-x , t) Parameters Forcing Frequency Ω2 Wavenumber k = 2π / L Should I write? ux (0 , t) = 0

3 [McLaughlin, Cai, Shatah]
Homoclinic Orbits Bh For the unperturbed eq. B(x , t) = c (t) + b (x,t) Plain Wave Solution Bpw(0 , t) = |c| e i(ωt+φ₀) Homoclinic Orbit to a PW Bh(x , t) t±∞ Bpw(0 , t) Experiments, Homoclinic orbits to any solution, multi-pulse homoclinic orbits FIX: the red line inside the blue circle -OK Add: resonant circle Bpw [McLaughlin, Cai, Shatah]

4 Resonance – Circle of Fixed Points
Bh When ω=0 – circle of fixed points occur Bpw(0 , t) = |c| e i(φ₀) Heteroclinic Orbits! Bpw φ₀ Experiments, Homoclinic orbits to any solution, multi-pulse homoclinic orbits FIX: the red line inside the blue circle -OK Add: resonant circle [Haller, Kovacic]

5 [Bishop, McLaughlin, Forest, Overman]
Two Mode Model Consider two mode Fourier truncation B(x , t) = c (t) + b (t) cos (kx) Substitute into the unperturbed eq.: Add perturbation – OK? Two mode model approximates the pw solution and cos is supposed to model the hom. structure Plain wave stability [Bishop, McLaughlin, Forest, Overman]

6 General Action-Angle Coordinates for c≠0
Consider the transformation: c = |c| eiγ b = (x + iy) eiγ I = ½(|c|2+x2+y2) Plain wave stability, perturbation? [Kovacic]

7 Then the 2 mode model is plausible for I < 2k2
Plain Wave Stability Plain wave: B(0,t)= c(t) Introduce x-dependence of small magnitude B (x , t) = c(t) + b(x,t) Plug into the integrable equation and solve the linearized equation. From dispersion relation get instability for: 0 < k2 < |c|2 Then the 2 mode model is plausible for I < 2k2

8 Hierarchy of Bifurcations
Level 1 Single energy surface - EMBD, Fomenko Level 2 Energy bifurcation values - Changes in EMBD Level 3 Parameter dependence of the energy bifurcation values - k, Ω

9 Preliminary step - Local Stability
B(x , t) = [|c| + (x+iy) coskx ] eiγ Fixed Point Stable Unstable x=0 y=0 I > 0 I > ½ k2 x=±x2 I > ½k2 - x =0 y=±y3 I > 2k2 x =±x4 y=±y4 Remember stability analysis [Kovacic & Wiggins]

10 Level 1: Singularity Surfaces
Construction of the EMBD - (Energy Momentum Bifurcation Diagram) Fixed Point H(xf , yf , I; k=const, Ω=const) x=0 y=0 H1 x=±x2 H2 x =0 y=±y3 H3 x =±x4 y=±y4 H4 [Litvak-Hinenzon & RK]

11 EMBD Parameters: k=1.025 , Ω=1 Dashed – Unstable Full – Stable H4 H1

12 Fomenko Graphs and Energy Surfaces
Example: H=const (line 5)

13 Level 2: Energy Bifurcation Values
* 4 5* 6 Yellow square around 5 - OK

14 Possible Energy Bifurcations
Folds - Resonances Crossings – Global Bifurcation Branching surfaces – Parabolic Circles H I

15 Finding Energy Bifurcations
Resonance Parabolic GB Parabolic resonance

16 What happens when energy bifurcation values coincide?
Example: Parabolic Resonance for (x=0,y=0) Resonance IR= Ω2 hrpw = -½ Ω4 Parabolic Circle Ip= ½ k2 hppw = ½ k2(¼ k2 - Ω2) Change red points to some other color Parabolic Resonance: IR=IP k2=2Ω2

17 Level 3: Bifurcation Parameters
Example of a diagram: Fix k Find Hrpw(Ω) Find Hppw(Ω) Find Hrpwm(Ω) Plot H(Ω) diagram Add slide on PR – when bifurcations coincide

18 Perturbed motion classification
Close to the integrable motion “Standard” dyn. phenomena Homoclinic Chaos, Elliptic Circles Special dyn. phenomena PR, ER, HR, GB-R Change red points to some other color

19 Homoclinic Chaos Model PDE
k=1.025, Ω=1, ε ~ i.c. (x, y, I, γ) = (0,0,1.5,π/2)

20 Hyperbolic Resonance Model PDE
k=1.025, Ω2=1, ε ~ i.c. (x, y, I, γ) = (0,0,1,π/2)

21 Parabolic Resonance Model PDE
k=1.025, Ω2=k2/2, ε ~ i.c. (x, y, I, γ) = (0,0,k2/2,π/2)

22 Measure: σmax = std( |B0j| max)
Classification y x Measure: σmax = std( |B0j| max)

23 Measure Dependence on ε
p is the power of the order: O(εp)

24 Discussion Solutions close to HR Stability of solutions
Applying measure to PDE results Change red points to some other color


Download ppt "Instabilities in the Forced Truncated NLS"

Similar presentations


Ads by Google