Download presentation
Presentation is loading. Please wait.
1
Instabilities in the Forced Truncated NLS
Eli Shlizerman and Vered Rom-Kedar Weizmann Institute of Science 1. ES & RK, Characterization of Orbits in the Truncated NLS Model, ENOC-05 2. ES & RK, Hierarchy of bifurcations in the truncated and forced NLS model, CHAOS-05 3. ES & RK, Energy surfaces and Hierarchies of bifurcations - Instabilities in the forced truncated NLS, Cargese-03 SNOWBIRD, 2005
2
Near-integrable NLS Conditions Parameters
(+) focusing dispersion Conditions Periodic Boundary u (x , t) = u (x + L , t) Even Solutions u (x , t) = u (-x , t) Parameters Forcing Frequency Ω2 Wavenumber k = 2π / L Should I write? ux (0 , t) = 0
3
[McLaughlin, Cai, Shatah]
Homoclinic Orbits Bh For the unperturbed eq. B(x , t) = c (t) + b (x,t) Plain Wave Solution Bpw(0 , t) = |c| e i(ωt+φ₀) Homoclinic Orbit to a PW Bh(x , t) t±∞ Bpw(0 , t) Experiments, Homoclinic orbits to any solution, multi-pulse homoclinic orbits FIX: the red line inside the blue circle -OK Add: resonant circle Bpw [McLaughlin, Cai, Shatah]
4
Resonance – Circle of Fixed Points
Bh When ω=0 – circle of fixed points occur Bpw(0 , t) = |c| e i(φ₀) Heteroclinic Orbits! Bpw φ₀ Experiments, Homoclinic orbits to any solution, multi-pulse homoclinic orbits FIX: the red line inside the blue circle -OK Add: resonant circle [Haller, Kovacic]
5
[Bishop, McLaughlin, Forest, Overman]
Two Mode Model Consider two mode Fourier truncation B(x , t) = c (t) + b (t) cos (kx) Substitute into the unperturbed eq.: Add perturbation – OK? Two mode model approximates the pw solution and cos is supposed to model the hom. structure Plain wave stability [Bishop, McLaughlin, Forest, Overman]
6
General Action-Angle Coordinates for c≠0
Consider the transformation: c = |c| eiγ b = (x + iy) eiγ I = ½(|c|2+x2+y2) Plain wave stability, perturbation? [Kovacic]
7
Then the 2 mode model is plausible for I < 2k2
Plain Wave Stability Plain wave: B(0,t)= c(t) Introduce x-dependence of small magnitude B (x , t) = c(t) + b(x,t) Plug into the integrable equation and solve the linearized equation. From dispersion relation get instability for: 0 < k2 < |c|2 Then the 2 mode model is plausible for I < 2k2
8
Hierarchy of Bifurcations
Level 1 Single energy surface - EMBD, Fomenko Level 2 Energy bifurcation values - Changes in EMBD Level 3 Parameter dependence of the energy bifurcation values - k, Ω
9
Preliminary step - Local Stability
B(x , t) = [|c| + (x+iy) coskx ] eiγ Fixed Point Stable Unstable x=0 y=0 I > 0 I > ½ k2 x=±x2 I > ½k2 - x =0 y=±y3 I > 2k2 x =±x4 y=±y4 Remember stability analysis [Kovacic & Wiggins]
10
Level 1: Singularity Surfaces
Construction of the EMBD - (Energy Momentum Bifurcation Diagram) Fixed Point H(xf , yf , I; k=const, Ω=const) x=0 y=0 H1 x=±x2 H2 x =0 y=±y3 H3 x =±x4 y=±y4 H4 [Litvak-Hinenzon & RK]
11
EMBD Parameters: k=1.025 , Ω=1 Dashed – Unstable Full – Stable H4 H1
12
Fomenko Graphs and Energy Surfaces
Example: H=const (line 5)
13
Level 2: Energy Bifurcation Values
* 4 5* 6 Yellow square around 5 - OK
14
Possible Energy Bifurcations
Folds - Resonances Crossings – Global Bifurcation Branching surfaces – Parabolic Circles H I
15
Finding Energy Bifurcations
Resonance Parabolic GB Parabolic resonance
16
What happens when energy bifurcation values coincide?
Example: Parabolic Resonance for (x=0,y=0) Resonance IR= Ω2 hrpw = -½ Ω4 Parabolic Circle Ip= ½ k2 hppw = ½ k2(¼ k2 - Ω2) Change red points to some other color Parabolic Resonance: IR=IP k2=2Ω2
17
Level 3: Bifurcation Parameters
Example of a diagram: Fix k Find Hrpw(Ω) Find Hppw(Ω) Find Hrpwm(Ω) Plot H(Ω) diagram Add slide on PR – when bifurcations coincide
18
Perturbed motion classification
Close to the integrable motion “Standard” dyn. phenomena Homoclinic Chaos, Elliptic Circles Special dyn. phenomena PR, ER, HR, GB-R Change red points to some other color
19
Homoclinic Chaos Model PDE
k=1.025, Ω=1, ε ~ i.c. (x, y, I, γ) = (0,0,1.5,π/2)
20
Hyperbolic Resonance Model PDE
k=1.025, Ω2=1, ε ~ i.c. (x, y, I, γ) = (0,0,1,π/2)
21
Parabolic Resonance Model PDE
k=1.025, Ω2=k2/2, ε ~ i.c. (x, y, I, γ) = (0,0,k2/2,π/2)
22
Measure: σmax = std( |B0j| max)
Classification y x Measure: σmax = std( |B0j| max)
23
Measure Dependence on ε
p is the power of the order: O(εp)
24
Discussion Solutions close to HR Stability of solutions
Applying measure to PDE results Change red points to some other color
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.