Presentation is loading. Please wait.

Presentation is loading. Please wait.

Similar Polygons Skill 36.

Similar presentations


Presentation on theme: "Similar Polygons Skill 36."โ€” Presentation transcript:

1 Similar Polygons Skill 36

2 Objective HSG-SRT.5: Students are responsible for identifying and applying similar polygons to solve problems.

3 Definitions Similar figures have the same shape but not necessarily the same size. When three or more ratios are equal, you can write an extended proportion. A scale factor is the ratio of corresponding linear measurements of two similar figures.

4 Similar Polygons B I C J A D H K
Two polygons are similar polygons if corresponding angles are congruent and if the lengths of corresponding sides are proportional. B I C J A D H K

5 Example 1; Understanding Similarity
Given: โˆ†๐‘€๐‘๐‘ƒ~โˆ†๐‘†๐‘…๐‘‡ a) What are the pairs of congruent angles? โˆ ๐‘ดโ‰…โˆ ๐‘บ โˆ ๐‘ตโ‰…โˆ ๐‘น โˆ ๐‘ทโ‰…โˆ ๐‘ป N M P R S T b) What is the extended proportion for the ratios of the lengths of corresponding sides? ๐‘ด๐‘ต ๐‘บ๐‘น = ๐‘ต๐‘ท ๐‘น๐‘ป = ๐‘ด๐‘ท ๐‘บ๐‘ป

6 Example 2; Determining Similarity
Are the polygons similar? If they are, write a similarity statement and give the scale factor. If not explain why not. a) ๐ฝ๐พ๐ฟ๐‘€ and ๐‘‡๐‘ˆ๐‘‰๐‘Š J K L M V U T W 16 6 12 14 24 Assume Corresponding angles are congruent. ๐‘ฑ๐‘ฒ ๐‘ป๐‘ผ = ๐Ÿ๐Ÿ ๐Ÿ” ๐‘ด๐‘ฑ ๐‘พ๐‘ป = ๐Ÿ” ๐Ÿ” ๐‘ณ๐‘ด ๐‘ฝ๐‘พ = ๐Ÿ๐Ÿ’ ๐Ÿ๐Ÿ’ ๐‘ฒ๐‘ณ ๐‘ผ๐‘ฝ = ๐Ÿ๐Ÿ’ ๐Ÿ๐Ÿ” JKLM is not similar to TUVW, because corresponding sides are not proportional.

7 Example 2; Determining Similarity
Are the polygons similar? If they are, write a similarity statement and give the scale factor. If not explain why not. b) โˆ†๐ด๐ต๐ถ and โˆ†๐ท๐ธ๐น B C A E F D Assume corresponding angles are congruent. 16 15 10 20 12 8 ๐‘จ๐‘ฉ ๐‘ซ๐‘ฌ = ๐Ÿ๐Ÿ“ ๐Ÿ๐Ÿ = ๐Ÿ“ ๐Ÿ’ ๐‘ฉ๐‘ช ๐‘ฌ๐‘ญ = ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ” = ๐Ÿ“ ๐Ÿ’ ๐‘จ๐‘ช ๐‘ซ๐‘ญ = ๐Ÿ๐ŸŽ ๐Ÿ– = ๐Ÿ“ ๐Ÿ’ Yes, โˆ†ABC ~ โˆ†DEF with a scale factor of 5/4.

8 Example 3; Using Similar Polygons
Consider ๐ด๐ต๐ถ๐ท~๐ธ๐น๐บ๐ท a) Find the value of x b) Find the value of y. ๐‘ญ๐‘ฎ ๐‘ฉ๐‘ช = ๐‘ฌ๐‘ซ ๐‘จ๐‘ซ ๐‘ฌ๐‘ญ ๐‘จ๐‘ฉ = ๐‘ฌ๐‘ซ ๐‘จ๐‘ซ 9 6 x 7.5 5 y B C D A F G E ๐’™ ๐Ÿ•.๐Ÿ“ = ๐Ÿ” ๐Ÿ— ๐’š ๐Ÿ“ = ๐Ÿ” ๐Ÿ— ๐Ÿ—๐’™=๐Ÿ’๐Ÿ“ ๐Ÿ—๐’š=๐Ÿ‘๐ŸŽ ๐’™=๐Ÿ“ ๐’š= ๐Ÿ๐ŸŽ ๐Ÿ‘

9 Example 4; Using Similar Polygons
Consider ๐‘Š๐‘‹๐‘Œ๐‘~๐‘…๐‘†๐‘‡๐‘ and ๐‘Š๐‘‹๐‘Œ๐‘ is a parallelogram a) Find the value of x. b) Find the value of y. c) Find the value of z. ๐‘น๐‘บ ๐‘พ๐‘ฟ = ๐‘บ๐‘ป ๐‘ฟ๐’€ X Y Z W S T R zแต’ 60แต’ x 20 24 yแต’ 16 ๐Ÿ๐Ÿ” ๐Ÿ๐Ÿ’ = ๐’™ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ’๐’™=๐Ÿ‘๐Ÿ๐ŸŽ Opposite Angles of Parallelogram are Congruent. ๐’š=๐Ÿ”๐ŸŽ ๐’™= ๐Ÿ’๐ŸŽ ๐Ÿ‘ Consecutive Angles of Parallelogram are Supp. ๐’›=๐Ÿ๐Ÿ๐ŸŽ

10 Example 5; Using Similarity
a) Your class is making a rectangular poster for a rally. The posterโ€™s design is 6 in. high by 10 in. wide. The space allowed for the poster is 4ft. high by 8 ft. wide. What are the dimensions of the largest poster that will fit in the space? Height: ๐Ÿ’ ๐’‡๐’•.=๐Ÿ’๐Ÿ– ๐’Š๐’. Width: ๐Ÿ– ๐’‡๐’•.=๐Ÿ—๐Ÿ” ๐’Š๐’. ๐Ÿ’๐Ÿ–๐’Š๐’รท๐Ÿ”๐’Š๐’=๐Ÿ– ๐Ÿ—๐Ÿ”๐’Š๐’รท๐Ÿ๐ŸŽ๐’Š๐’=๐Ÿ—.๐Ÿ” Biggest possible scale ๐Ÿ” ๐Ÿ’๐Ÿ– = ๐Ÿ๐ŸŽ ๐’™ ๐Ÿ”๐’™=๐Ÿ’๐Ÿ–๐ŸŽ ๐’™=๐Ÿ–๐ŸŽ The poster can be 48โ€™โ€™ by 80โ€™โ€™ or 4โ€™ by 6โ€™8โ€™โ€™

11 Example 5; Using Similarity
b) Your class is making a rectangular poster for a rally. The posterโ€™s design is 6 in. high by 10 in. wide. The space allowed for the poster is 3ft. high by 4 ft. wide. What are the dimensions of the largest poster that will fit in the space? Height: ๐Ÿ‘ ๐’‡๐’•.=๐Ÿ‘๐Ÿ” ๐’Š๐’. Width: ๐Ÿ’ ๐’‡๐’•.=๐Ÿ’๐Ÿ– ๐’Š๐’. ๐Ÿ‘๐Ÿ”๐’Š๐’รท๐Ÿ”๐’Š๐’=๐Ÿ” ๐Ÿ’๐Ÿ–๐’Š๐’รท๐Ÿ๐ŸŽ๐’Š๐’=๐Ÿ’.๐Ÿ– ๐Ÿ๐ŸŽ ๐Ÿ’๐Ÿ– = ๐Ÿ” ๐’™ Biggest possible scale ๐Ÿ’๐ŸŽ๐’™=๐Ÿ๐Ÿ–๐Ÿ– ๐’™=๐Ÿ๐Ÿ–.๐Ÿ– The poster can be 28.8โ€™โ€™ by 48โ€™โ€™ or 2โ€™4.8โ€™โ€™ by 4โ€™

12 Example 6; Using a Scale Drawing
A drawing of the Golden Gate Bridge in San Francisco is drawn to the scale of 1 cm to 200 m. the distance between the two towers is the main span, this is 6.4 cm in the drawing. What is the actual length of the main span of the bridge? ๐Ÿ ๐’„๐’Ž ๐Ÿ๐ŸŽ๐ŸŽ ๐’Ž = ๐Ÿ”.๐Ÿ’ ๐’„๐’Ž ๐’™ ๐’Ž ๐’™=๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ”.๐Ÿ’ ๐’™=๐Ÿ๐Ÿ๐Ÿ–๐ŸŽ ๐’Ž

13 #36: Similar Polygons Questions? Summarize Notes Homework Video Quiz


Download ppt "Similar Polygons Skill 36."

Similar presentations


Ads by Google