Presentation is loading. Please wait.

Presentation is loading. Please wait.

13. Reactor Engineering: Reactor Design

Similar presentations


Presentation on theme: "13. Reactor Engineering: Reactor Design"β€” Presentation transcript:

1 13. Reactor Engineering: Reactor Design
Chemical engineering 170

2 Review: Reaction Rates
Ways to increase reaction rates: Rate laws (𝐴+𝐡→𝐢+𝐷 ): π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿ 𝑐 𝐴 𝑛 𝑐 𝐡 π‘š (Under what assumptions?) π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 units: π‘šπ‘œπ‘™π‘’π‘  π‘‘π‘–π‘šπ‘’ 𝑉 If you have π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 from a mole balance, how is it related to π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 ?

3 Reaction Rate: Temperature
The Arrhenius Equation: π‘˜ π‘Ÿ =𝐴 𝑒 βˆ’ 𝐸 𝐴 𝑅𝑇

4 π‘˜ π‘Ÿβˆ— = π‘˜ π‘Ÿ 𝑐 𝐡 π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴 Reaction Rate: 𝑐 𝐡 ≫ 𝑐 𝐴
Consider reaction 𝐴+𝐡→𝐢 with rate law π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿ 𝑐 𝐴 𝑐 𝐡 If 𝑐 𝐡 ≫ 𝑐 𝐴 … 𝑐 𝐡 β‰ˆπ‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘˜ π‘Ÿβˆ— = π‘˜ π‘Ÿ 𝑐 𝐡 π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

5 Batch Reactors Vs. Continuous Reactors

6 Two Types of continuous reactor
Plug Flow Reactor (PFR) Continuously-Stirred Tank Reactor (CSTR) reactants products reactants products Concentrations change across reactor Reactant concentrations drop Product concentrations rise All concentrations assumed: Constant Same as outlet concentration

7 Reactor Design Equations
To design a reactor, we derive governing equations Today we will find governing equations for: A batch reactor A CSTR For reactions obeying π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

8 Batch Reactor π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 =βˆ’ 𝑑 𝑐 𝐴 𝑑𝑑 𝑉 π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 = π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 𝑉
Is this steady-state? π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 =βˆ’ 𝑑 𝑐 𝐴 𝑑𝑑 𝑉 π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 = π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 𝑉 𝑑 𝑐 𝐴 𝑐 𝐴 =βˆ’ π‘˜ π‘Ÿβˆ— 𝑑𝑑 𝑐 𝐴0 𝑐 𝐴 𝑑 𝑐 𝐴 𝑐 𝐴 =βˆ’ π‘˜ π‘Ÿβˆ— 0 𝑑 𝑑𝑑 𝐴+𝐡→𝐢 π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

9 Batch Reactor 𝑙𝑛 𝑐 𝐴 𝑐 𝐴0 =βˆ’ π‘˜ π‘Ÿβˆ— 𝑑 𝑐 𝐴 = 𝑐 𝐴0 𝑒 βˆ’π‘˜ π‘Ÿβˆ— 𝑑

10 Example: Finding rate constant
With the reaction we’ve been usingβ€”if initial concentration of A in a batch reactor is πœ‡π‘€ and after 10 minutes of reaction the concentration of A is 5 πœ‡π‘€ what is π‘˜ π‘Ÿβˆ— ? What would we need to know to find π‘˜ π‘Ÿ ? If 𝑐 𝐡 is 9160 πœ‡π‘€, what’s π‘˜ π‘Ÿ ?

11 Continuously-stirred tank Reactor (CSTR)
A, B, C B Is this steady-state? Overall mass balance: 1 2 3 π‘š π‘š 2 = π‘š π‘œπ‘’π‘‘ 𝜌 𝑉 1 + 𝜌 𝑉 2 = 𝜌 𝑉 π‘œπ‘’π‘‘ Assume densities about the same 𝑉 𝑉 2 = 𝑉 π‘œπ‘’π‘‘ 𝐴+𝐡→𝐢 π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

12 Continuously-stirred tank Reactor (CSTR)
Mole balance on A: A A, B, C B 1 2 𝑛 𝐴,1 = 𝑛 𝐴,π‘œπ‘’π‘‘ + π‘Ÿ π‘π‘œπ‘›π‘ ,𝐴 𝑐 𝐴,1 𝑉 1 = 𝑐 𝐴,3 𝑉 3 + π‘˜ π‘Ÿβˆ— 𝑐 𝐴,3 𝑉 𝑅 Mole balance on B: 3 𝑛 𝐡,2 = 𝑛 𝐡,3 + π‘Ÿ π‘π‘œπ‘›π‘ ,𝐡 𝐴+𝐡→𝐢 𝑐 𝐡,2 𝑉 2 = 𝑐 𝐡,3 𝑉 3 + π‘£π‘’π‘Ÿπ‘¦ π‘ π‘šπ‘Žπ‘™π‘™ (β‰ˆ0) π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

13 𝑐 𝐴,1 𝑉 1 = 𝑐 𝐴,3 𝑉 3 + π‘˜ π‘Ÿβˆ— 𝑐 𝐴,3 𝑉 𝑅 𝑐 𝐡,2 𝑉 2 = 𝑐 𝐡,3 𝑉 3
CSTR 𝑐 𝐴,1 𝑉 1 = 𝑐 𝐴,3 𝑉 3 + π‘˜ π‘Ÿβˆ— 𝑐 𝐴,3 𝑉 𝑅 𝑐 𝐡,2 𝑉 2 = 𝑐 𝐡,3 𝑉 3 π‘˜ π‘Ÿβˆ— = 𝑐 𝐡,3 π‘˜ π‘Ÿ

14 Residence time Residence time 𝝉 : 1 2 3 𝜏= 𝑉 𝑅 𝑉 3 𝐴+𝐡→𝐢
A A, B, C B Residence time 𝝉 : The average time a molecule spends inside a reactor Sort of like 𝑑 in the batch reactor For our set-up: 1 2 3 𝜏= 𝑉 𝑅 𝑉 3 𝐴+𝐡→𝐢 π‘Ÿ π‘Ÿπ‘₯𝑛,𝐴 = π‘˜ π‘Ÿβˆ— 𝑐 𝐴

15 𝑐 𝐴 = 𝑐 𝐴,1 𝑉 1 𝑉 3 1+ π‘˜ π‘Ÿβˆ— 𝜏 π‘˜ π‘Ÿβˆ— = π‘˜ π‘Ÿ 𝐢 𝐡,2 𝑉 2 𝑉 3 𝜏= 𝑉 𝑅 𝑉 3
CSTR Discussion Can rearrange equations into this expression for concentration of A in the reactor: 𝑐 𝐴 = 𝑐 𝐴,1 𝑉 𝑉 π‘˜ π‘Ÿβˆ— 𝜏 π‘˜ π‘Ÿβˆ— = π‘˜ π‘Ÿ 𝐢 𝐡,2 𝑉 𝑉 3 𝜏= 𝑉 𝑅 𝑉 3 π‘€β„Žπ‘’π‘Ÿπ‘’: Discuss with your neighbor what will happen to the concentration of A exiting the reactor if: Reactor volume is increased Input concentration of B is increased Temperature is increased Input flowrate of either A is increased (this will also increase total output flowrate!)


Download ppt "13. Reactor Engineering: Reactor Design"

Similar presentations


Ads by Google