Download presentation
Presentation is loading. Please wait.
1
Inverse Crimes d=Lm m=L-1 d Red Sea Synthetics
From Chapter 1: Inverse problems: an introduction
2
Inverse Crime Definition
Inverse Crime: Employing the same modeling algorithm d=Lm to generate & invert m=L-1 d the synthetic data. Avoiding Inverse Crimes: Generate synthetic data Lm by a forward solver that has no connection to inverse solver m=L-1 d=L-1 Ld. unreallistically optimistic results. Example 1: Field data inversion. Example 2: Elastic model vs acoustic inverse. Example 3: Different discretizations
3
Inverse Crime Questions
1. What does the term „no connection“ mean? 2. What kind of reconstructions of the unknown parameters can one obtain when there is „no connection“ between the forward and inverse solvers? m=L-1 d=L-1 Ld 3. Are inverse crime inversions always trivial? 4. Should the inverse crime always be avoided?
4
Waveform Tomograms Initial model 5 Hz 10 Hz 20 Hz 0 km 6 km 0 km 20 km
6 km/s Initial model 6 km 3 km/s 0 km 20 km 0 km 5 Hz 6 km/s 6 km 3 km/s 0 km 6 km/s 10 Hz 6 km 3 km/s 0 km 6 km/s 20 Hz 6 km 3 km/s
5
Waveform Tomograms Initial model 5 Hz 10 Hz 20 Hz 0 km 6 km 0 km 20 km
6 km/s Initial model 6 km 3 km/s 0 km 20 km 0 km 5 Hz 6 km/s 6 km 3 km/s 0 km 6 km/s 10 Hz 6 km 3 km/s 0 km 6 km/s 20 Hz 6 km 3 km/s
6
Traveltime Tomogram Depth (km) 3000 2.5 Velocity (m/s)
Depth (km) 3000 2.5 Velocity (m/s) Waveform Tomogram 1500 Depth (km) 2.5 X (km) 20 20
7
Vertical Derivative of Waveform Tomogram
3000 Waveform Tomogram Velocity (m/s) Depth (km) 1500 2.5 Vertical Derivative of Waveform Tomogram Depth (km) 2.5 X (km) 20 21
8
Kirchhoff Migration Images
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.