Presentation is loading. Please wait.

Presentation is loading. Please wait.

Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders

Similar presentations


Presentation on theme: "Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders"— Presentation transcript:

1 Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders
14th KSF, Smolenice Oct 13, 2004 Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders Ivan Melo D. Bruncko (IEP SAS Kosice) M. Gintner (University of Zilina) I. Melo (University of Zilina)

2 Outline Motivation for new vector (ρ) resonances
Vector resonance models ρ signals in e+e- → ννtt

3

4

5 Chiral SB in QCD EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV
SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

6 WL WL → t t

7 Chiral effective Lagrangian
A simple Lagrangian L = i gπ Mρ/v (π- ∂μ π+ - π+ ∂μ π- )ρ0μ + gV t γμ t ρ0μ + gA t γμ γ5 t ρ0μ (1) Chiral effective Lagrangian L = - v2 Tr [ Aμ Aμ] - a v2 /4 Tr[(ωμ + i g'' ρμ . τ/2 )2] + b1 IbL + b2 IbR (2) gπ = Mρ /(2 v g''), gV ≈ g'' b2 /[4(1+b2)], Mρ ≈ √a v g''/2.

8 Unitarity constraints
WL WL → WL WL , WL WL → t t, t t → t t gπ ≤ (Mρ= 700 GeV) gV ≤ (Mρ= 700 GeV) Low energy constraints g’’ ≥ 10 |b2| ≤ 0.08

9

10 Subset of fusion diagrams + approximations (Pythia)
Full calculation of 66 diagrams at tree level (CompHEP)

11 Pythia vs CompHEP ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08)
Before cuts √s (GeV) Pythia (fb) CompHEP (fb)

12 Backgrounds (Pythia) e+e- → e+e- tt e+e- → tt γ
σ(0.8 TeV) = fb → 0.13 fb (0.20 fb) σ(1.0 TeV) = fb → fb (0.16 fb)

13

14

15

16

17 Conclusions ρ in e+e- → ννtt – sensitive probe of mt physics
σ(1 TeV) = (0.035) fb R values up to 8


Download ppt "Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders"

Similar presentations


Ads by Google