Download presentation
Presentation is loading. Please wait.
1
Ch.1 Basic Descriptions and Properties
D : deterministic data ND : non-deterministic (random) explicit mathematical relationship 실험적으로 data 재현 가능 m x(t)
2
Ch.1 Basic Descriptions and Properties
Periodic Sinusoidal : Complex Periodic : 삼각파, 사각파 Fourier Series Amplitude
3
Ch.1 Basic Descriptions and Properties
Nonperiodic Almost periodic : 무리수 등간격이 안됨 Transient
4
Ch.1 Basic Descriptions and Properties
Nondeterministic (random) Stationary Ergodic Nonergodic Nonstationary 1) ensemble averaging xN(t) x2(t) x1(t) sample fn ensemble averaging random process
5
Ch.1 Basic Descriptions and Properties
※ (weakly) stationary의 성질 : mean of random process ( 에 무관) : autocorrelation all possible moments and joint moment are time invariant strongly stationary 2) time averaging 가 sample fn 에 따라 불변 + Stationary Ergodic All other properties도 만족 ensemble/time 모두 Averaging하면 증명됨 * 여기서 다룰 data 모두 ergodic
6
Ch.1 Basic Descriptions and Properties
Analysis of Random Data Single stationary random data mean, variance p.d.f auotocorrelation autospectral (표현하는 중요한 확률적 성질) Pairs of random record Joint p.d.f Cross-correlation function Cross-spectral density function FRF Coherence function I/O Relations Single-Input / Single-Output model (SISO) Single-Input / Multiple-Output model (SIMO) Multiple-Input / Single-Output model (MISO) Multiple-Input / Multiple-Output model (MIMO) superposition superposition
7
Ch.1 Basic Descriptions and Properties
Statistical Error Variance Bias MSE (mean square error) variance error bias error MSE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.