Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recent Structure Lemmas for Depth-Two Threshold Circuits

Similar presentations


Presentation on theme: "Recent Structure Lemmas for Depth-Two Threshold Circuits"β€” Presentation transcript:

1 Recent Structure Lemmas for Depth-Two Threshold Circuits
Lijie Chen MIT

2 THR∘THR Circuits THR gates : 𝑓 π‘₯ = 𝑀⋅π‘₯β‰₯𝑑 π‘€βˆˆ 𝑍 𝑛 , π‘‘βˆˆπ‘.
MAJ gates : when 𝑀 𝑖 ’s and 𝑑 are bounded by poly(n). THR∘THR: We can also define π‘‡π»π‘…βˆ˜π‘€π΄π½ π‘€π΄π½βˆ˜π‘‡π»π‘… π‘€π΄π½βˆ˜π‘€π΄π½ Always mean polynomial-size circuits THR THR THR THR

3 THR∘THR Circuits Frontier Open Question: Is NEXP βŠ†π‘‡π»π‘…βˆ˜π‘‡π»π‘…?
Exponential Lower Bound are known for π‘€π΄π½βˆ˜π‘€π΄π½ [Hajnal-Maass-PudlΓ‘k-Szegedy-TurΓ‘n’93] π‘€π΄π½βˆ˜π‘‡π»π‘… [Nisan’94] π‘‡π»π‘…βˆ˜π‘€π΄π½ [Forster-Krause-Lokam-Mubarakzjanov-Schmitt-Simon’01] NEXP: Non-deterministic Exponential Time. THR gate is just a half-space Frontier Open Question: Is NEXP βŠ†π‘‡π»π‘…βˆ˜π‘‡π»π‘…? Potential Approaches in this talk.

4 Motivation R. Williams’ algorithmic approach to lower bounds:
Lower Bounds for π‘ͺ from Non-trivial Algorithms for π‘ͺ. (some subtleties in depth increase of 𝐢, but turns out we can handle it!) Natural Question: How hard is algorithmic analysis of π‘‡π»π‘…βˆ˜π‘‡π»π‘… circuits? How does it compare to π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½? (Spoiler): They’re equally hard/easy… Counterintuitive! THR gate is just a half-space We know THR of THR is strictly stronger than THR of MAJ which is in turn strictly stronger than MAJ of MAJ

5 Algorithmic Questions
𝐢-SAT 𝐢-CAPP Estimate quantity Pr π‘₯∼ π‘ˆ 𝑛 [𝐢 π‘₯ =1] , with additive error πœ€ 𝐢 𝐢 βˆƒ x s.t. 𝐢 π‘₯ =1? Our notion for Non-trivial CAPP is slightly restrictive more several technical reasons… Because we don’t want to afford a loss of the depth in the construction βˆƒπ‘₯ ? π‘₯∼ π‘ˆ 𝑛

6 Algorithmic Questions
𝐢-SAT 𝐢-CAPP Define non-trivial algorithms: 1. Non-trivial SAT: 2 𝑛 / 𝑛 πœ” 1 time algorithm for SAT. 2. Non-trivial CAPP: 2 𝑛 / n πœ” 1 time for CAPP with error πœ€=1/π‘π‘œπ‘™π‘¦(𝑛). Estimate quantity Pr π‘₯∼ π‘ˆ 𝑛 [𝐢 π‘₯ =1] , with additive error πœ€ 𝐢 𝐢 βˆƒ x s.t. 𝐢 π‘₯ =1? Our notion for Non-trivial CAPP is slightly restrictive more several technical reasons… Because we don’t want to afford a loss of the depth in the construction βˆƒπ‘₯ ? π‘₯∼ π‘ˆ 𝑛

7 Algorithmic Equivalence I
Poly-size π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘‡π»π‘…βˆ˜π‘€π΄π½ are equivalent for Non-Trivial SAT Algorithms! In terms of non-trivial SAT algorithms, π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘‡π»π‘…βˆ˜π‘€π΄π½ are the same. In terms of non-trivial CAPP algorithms (a.k.a. derandomization), π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘€π΄π½βˆ˜π‘€π΄π½ are the same. THR THR THR THR THR MAJ MAJ MAJ

8 Algorithmic Equivalence II
Poly-size π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘€π΄π½βˆ˜π‘€π΄π½ are equivalent for Non-Trivial CAPP Algorithms! That is, from an algorithmic perspective, π‘‡π»π‘…βˆ˜π‘‡π»π‘… (we only have super-weak lower bound) is basically the same as π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½ (we have the strongest possible lower bound) THR MAJ THR THR THR MAJ MAJ MAJ

9 Motivation: New Structure Lemmas
[Goldmann-Hastad-Razborov’92]: π‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ†π‘€π΄π½βˆ˜π‘€π΄π½βˆ˜π‘€π΄π½ MAJ THR MAJ MAJ THR THR THR MAJ MAJ MAJ Explain Stuck!?! How do we use (π‘€π΄π½βˆ˜π‘€π΄π½) – SAT to solve SAT for π‘€π΄π½βˆ˜π‘€π΄π½βˆ˜π‘€π΄π½?

10 Motivation: New Structure Lemmas
What if we had a top 𝑢𝑹 gate? e.g., π‘‚π‘…βˆ˜π‘€π΄π½βˆ˜π‘€π΄π½ (π‘‚π‘…βˆ˜πΆ)-SAT 𝐢-SAT 𝐢 βˆƒ x s.t. βˆƒ 𝑖 𝐢 𝑖 π‘₯ =1? βˆƒ x s.t. 𝐢 π‘₯ =1? OR poly(n) 𝐢 1 𝐢 i 𝐢 π‘š βˆƒ x ? βˆƒ x ?

11 Motivation: New Structure Lemmas
DOR: Disjoint-OR (at most one input is ever true) What if we had a top 𝐃𝑢𝑹 gate? 𝐢-CAPP (π·π‘‚π‘…βˆ˜πΆ)-CAPP Estimate Pr π‘₯∼ π‘ˆ 𝑛 [𝐢 π‘₯ =1] , with error πœ€ 𝐢 Estimate Ex π‘₯∼ π‘ˆ 𝑛 𝑖 𝐢 𝑖 (π‘₯) . = 𝑖 Ex π‘₯∼ π‘ˆ 𝑛 [ 𝐢 𝑖 π‘₯ ] . DOR If, furthermore, we can get a top Disjoint OR gate, then we can even preserve the CAPP algorithms. Actually also preserve the counting algorithms. poly(n) 𝐢 1 𝐢 i 𝐢 π‘š π‘₯∼ π‘ˆ 𝑛 π‘₯∼ π‘ˆ 𝑛

12 π‘‡π»π‘…βˆ˜π‘‡π»π‘… can be explicitly written as an 𝑂𝑅 of poly-many π‘‡π»π‘…βˆ˜π‘€π΄π½
Structure Lemma I π‘‡π»π‘…βˆ˜π‘‡π»π‘… can be explicitly written as an 𝑂𝑅 of poly-many π‘‡π»π‘…βˆ˜π‘€π΄π½ OR poly(n) THR THR THR THR ETHR gate is just a slice of Boolean cube THR THR MAJ MAJ MAJ Corollary: 𝑛 / 𝑛 πœ” 1 time SAT for π‘‡π»π‘…βˆ˜π‘€π΄π½ of poly size β‡’ 2 𝑛 / 𝑛 πœ” 1 time SAT for π‘‡π»π‘…βˆ˜π‘‡π»π‘… of poly size

13 Structure Lemma II For all πœ€>0, every π‘‡π»π‘…βˆ˜π‘‡π»π‘… of size 𝑠 with 𝑛 inputs can be explicitly written as a π·π‘‚π‘…βˆ˜π‘€π΄π½βˆ˜π‘€π΄π½ circuit such that (1): The DOR gate has 2 πœ€π‘› fan-in. (2): All π‘€π΄π½βˆ˜π‘€π΄π½ sub-circuits have size 𝑠 𝑂(1/πœ€) . Two concrete settings: 1. π‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ† sub-exp DOR of π‘€π΄π½βˆ˜π‘€π΄π½. 2. π‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ† poly DOR of sub-exp-size π‘€π΄π½βˆ˜π‘€π΄π½. The second structure Lemma, is a little more complicated, …, …

14 Other Applications For all πœ€>0, every π‘‡π»π‘…βˆ˜π΄π‘ 𝐷 π‘˜ of size 𝑠 with 𝑛 inputs can be explicitly written as a π·π‘‚π‘…βˆ˜π‘€π΄π½βˆ˜π΄π‘ 𝐷 2π‘˜ circuits, such that (1): The DOR gate has 2 πœ€π‘› fan-in. (2): All π‘€π΄π½βˆ˜π΄π‘ 𝐷 2π‘˜ sub-circuits have size 𝑠 𝑂(1/πœ€) . Corollary: A Polynomial Threshold Function (PTF) of degree π‘˜ can be written as a sub-exp Disjoint-OR of PTF with poly-weights of degree 2π‘˜. PTF is just the sign of a polynomial

15 Open Question 1 Can every π‘‡π»π‘…βˆ˜π‘‡π»π‘… be expressed as an OR of poly-many π‘€π΄π½βˆ˜π‘€π΄π½? This will show they are equivalent for non-trivial SAT algorithms. Theorem: Non-trivial #SAT algorithm for π‘€π΄π½βˆ˜π‘€π΄π½ β‡’ Non-trivial nondeterministic UNSAT algorithm for π‘‡π»π‘…βˆ˜π‘‡π»π‘…. (Enough for an NEXP lower bound against π‘‡π»π‘…βˆ˜π‘‡π»π‘….)

16 SAT for Depth-d THR β‡’ Depth-d Lower Bounds
The Depth Increase Issue [Ben-Sasson--Viola’14]: 2 𝑛 / 𝑛 πœ”(1) SAT algorithm for AND 3 ∘π‘ͺ β‡’ NEXP is not in π‘ͺ. To show SAT algs for 𝑇𝐻𝑅 of 𝑇𝐻𝑅 imply analogous lower bounds, we can’t have this +1 increase in the depth Problem: We don’t know whether 𝐴𝑁 𝐷 3 βˆ˜π‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ†π‘‡π»π‘…βˆ˜π‘‡π»π‘… (maybe not?!) 𝐴𝑁 𝐷 3 THR gate is just a half-space Another result we have proved exploits THR properties to show that non-trivial SAT solving for depth-d threshold circuits actually implies lower bounds for depth-d. But this is not obvious, because there is a depth increase issue in the usual way we think about this. 𝐢 1 𝐢 2 𝐢 3

17 Dealing With Depth Increase
We can use ETHR gates ETHR gates : 𝑓 π‘₯ = 𝑀⋅π‘₯=𝑑 , for some π‘€βˆˆ 𝑍 𝑛 , π‘‘βˆˆπ‘. [Hansen-Podolskii’10] proved some structural results: 𝑇𝐻 𝑅 π‘š βŠ†π·π‘‚ 𝑅 π‘π‘œπ‘™π‘¦ π‘š βˆ˜πΈπ‘‡π» 𝑅 π‘š πΈπ‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ†π‘‡π»π‘…βˆ˜π‘‡π»π‘… π΄π‘π·βˆ˜πΈπ‘‡π»π‘…βŠ†πΈπ‘‡π»π‘… Explain these old results

18 Dealing With Depth Increase
𝑇𝐻 𝑅 π‘š βŠ†π·π‘‚ 𝑅 π‘π‘œπ‘™π‘¦ π‘š βˆ˜πΈπ‘‡π» 𝑅 π‘š 𝐴𝑁 𝐷 3 βˆ˜π‘‡π»π‘…βˆ˜π‘‡π»π‘… 𝐴𝑁 𝐷 3 βˆ˜π·π‘‚ 𝑅 π‘π‘œπ‘™π‘¦ 𝑛 βˆ˜πΈπ‘‡π»π‘…βˆ˜π‘‡π»π‘… DOR = + AND = Γ— Theorem: Non-trivial SAT/CAPP for π‘‡π»π‘…βˆ˜π‘‡π»π‘… β‡’ Non-trivial SAT/CAPP for 𝐴𝑁 𝐷 3 βˆ˜π‘‡π»π‘…βˆ˜π‘‡π»π‘… β‡’ NEXP not in π‘‡π»π‘…βˆ˜π‘‡π»π‘… 𝐷𝑂 𝑅 π‘π‘œπ‘™π‘¦ 𝑛 βˆ˜π΄π‘ 𝐷 3 βˆ˜πΈπ‘‡π»π‘…βˆ˜π‘‡π»π‘… ETHR gate is just a slice of Boolean cube πΈπ‘‡π»π‘…βˆ˜π‘‡π»π‘…βŠ†π‘‡π»π‘…βˆ˜π‘‡π»π‘… π΄π‘π·βˆ˜πΈπ‘‡π»π‘…βŠ†πΈπ‘‡π»π‘… 𝐷𝑂 𝑅 π‘π‘œπ‘™π‘¦ 𝑛 βˆ˜π‘‡π»π‘…βˆ˜π‘‡π»π‘… 𝐷𝑂 𝑅 π‘π‘œπ‘™π‘¦ 𝑛 βˆ˜πΈπ‘‡π»π‘…βˆ˜π‘‡π»π‘…

19 Open Question 2 Corollary: If (π‘΄π‘¨π‘±βˆ˜π‘΄π‘¨π‘±)-CAPP has a non-trivial algorithm, Then NEXP not in π‘»π‘―π‘Ήβˆ˜π‘»π‘―π‘Ή. Can we β€œmine” any non-trivial SAT or CAPP algorithms from the exponential lower bound proofs for π‘€π΄π½βˆ˜π‘€π΄π½ or π‘‡π»π‘…βˆ˜π‘€π΄π½? Would imply NEXP not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…! That is, from an algorithmic perspective, π‘‡π»π‘…βˆ˜π‘‡π»π‘… (we only have super-weak lower bound) is basically the same as π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½ (we have the strongest possible lower bound)

20 Connection to Fine-Grained Complexity
𝑁𝐸𝑋𝑃 is not in π‘‡π»π‘…βˆ˜π‘‡π»π‘… would follow from β€œshaving logs” for several natural questions in computational geometry. Biochromatic Closest Pair Problem: Given 𝑛 red-blue points in polylog(n) dimensional Euclidean space, find the red-blue pair with minimum distance. Furthest Pair Problem: Given 𝑛 points in polylog(n) dimensional Euclidean space, find the pair with largest distance. 3. Hopcroft’s Problem: Given 𝑛 points and 𝑛 hyperplanes in polylog(n) dimensional Euclidean space, is some point on some hyperplane? Hopcroft’s problem is the problem that you are given n points and n plane If there is an 𝑛 2 / log πœ” 1 𝑛 time algorithm for any of them Then NEXP is not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…

21 A Simple CAPP-like Problem
𝐴𝑝π‘₯#π‘€π‘Žπ‘₯𝐼 𝑃 𝑛,𝑑 : Given 𝐴,π΅βŠ† 0,1 𝑑 of size 𝑛 and an integer 𝑑, approximate Pr π‘Ž,𝑏 βˆˆπ΄Γ—π΅ [ π‘Ž,𝑏 β‰₯𝑑] with additive error πœ€. By a simple reduction Corollary: If 𝐴𝑝π‘₯#π‘€π‘Žπ‘₯𝐼 𝑃 𝑛,𝑑 for 𝑑=π‘π‘œπ‘™π‘¦π‘™π‘œπ‘”(𝑛) can be solved with πœ€=1/π‘π‘œπ‘™π‘¦π‘™π‘œπ‘”(𝑛) in 𝑛 2 / log πœ”(1) 𝑛 time, then NEXP is not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…. ETHR gate is just a slice of Boolean cube

22 (Or show why they are unlikely?)
Open Question 3 Slightly improve the complexity of these computational geometry problems. (Or show why they are unlikely?) Would imply 𝑁𝐸𝑋𝑃 is not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…. That is, from an algorithmic perspective, π‘‡π»π‘…βˆ˜π‘‡π»π‘… (we only have super-weak lower bound) is basically the same as π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½ (we have the strongest possible lower bound)

23 Another Interesting Connection
π‘˜-SAT: Best Running Time is 2 𝑛(1βˆ’1/Θ(π‘˜)) . Best Known L.B. for general 𝑻 π‘ͺ 𝟎 circuits: [Impagliazzo-Paturi-Saks’93, Chen-Santhanam-Srinivasan’16]: Parity requires 𝑛 1+ 𝑐 βˆ’π‘‘ wires for depth-𝑑 𝑇 𝐢 0 circuits. [C.-Tell 18]: There’s a good reason for the 𝑛 1+exp⁑(βˆ’π‘‘) bound! 𝑛 1+exp⁑(βˆ’π‘œ(𝑑)) -wire lower bound for some 𝑁 𝐢 1 -complete problem like Boolean Formula Evalaution ⇒𝑁 𝐢 1 ≠𝑇 𝐢 0 It is consistent with the current state of knowledge that 𝐸 𝑁𝑃 has 𝑇 𝐢 0 circuits of 𝑂( log log 𝑛 ) depth and 𝑂 𝑛 wires.

24 Another Interesting Connection
Theorem: An 2 𝑛(1βˆ’1/ π‘˜ 1/πœ”( log log π‘˜ ) ) time π‘˜-SAT algorithm β‡’ 𝐸 𝑁𝑃 has no 𝑂(𝑛) size, 𝑂( log log 𝑛 )-depth 𝑇 𝐢 0 circuits. That is, from an algorithmic perspective, π‘‡π»π‘…βˆ˜π‘‡π»π‘… (we only have super-weak lower bound) is basically the same as π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½ (we have the strongest possible lower bound) Based on the reduction from 𝑇 𝐢 0 -SAT to π‘˜-SAT in [Abboud-Bringmann-Dell-Nederlof’18].

25 Conclusion Open Question
Poly-size π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘‡π»π‘…βˆ˜π‘€π΄π½ are equivalent for Non-Trivial SAT Algorithms Poly-size π‘‡π»π‘…βˆ˜π‘‡π»π‘… and π‘€π΄π½βˆ˜π‘€π΄π½ are equivalent for Non-Trivial CAPP Algorithms! Non-trivial SAT algorithms for π‘‡π»π‘…βˆ˜π‘€π΄π½ or CAPP algorithms for π‘€π΄π½βˆ˜π‘€π΄π½ β‡’ NEXP not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…. (No depth Increase) Slightly improving the running times on geometry problems β‡’ NEXP not in π‘‡π»π‘…βˆ˜π‘‡π»π‘…. Open Question Can every π‘‡π»π‘…βˆ˜π‘‡π»π‘… be expressed as an OR of poly-many π‘€π΄π½βˆ˜π‘€π΄π½? Can we β€œmine” any non-trivial SAT or CAPP algorithms from the exponential lower bound proofs for π‘€π΄π½βˆ˜π‘€π΄π½ or π‘‡π»π‘…βˆ˜π‘€π΄π½? Slightly improve the complexity of these computational geometry problems. (Or show why it is unlikely?)

26 Thanks That is, from an algorithmic perspective,
π‘‡π»π‘…βˆ˜π‘‡π»π‘… (we only have super-weak lower bound) is basically the same as π‘‡π»π‘…βˆ˜π‘€π΄π½ or π‘€π΄π½βˆ˜π‘€π΄π½ (we have the strongest possible lower bound)


Download ppt "Recent Structure Lemmas for Depth-Two Threshold Circuits"

Similar presentations


Ads by Google