Presentation is loading. Please wait.

Presentation is loading. Please wait.

PASCOS 01 Jul 2019 Positivity in the Sky Scott Melville.

Similar presentations


Presentation on theme: "PASCOS 01 Jul 2019 Positivity in the Sky Scott Melville."β€” Presentation transcript:

1 PASCOS Jul 2019 Positivity in the Sky Scott Melville

2 PASCOS Jul 2019 Positivity in the Sky Scott Melville

3 PASCOS Jul 2019 Positivity in the Sky Energy Scott Melville

4 PASCOS Jul 2019 Positivity in the Sky Energy Scott Melville

5 PASCOS Jul 2019 Positivity in the Sky Energy 𝐴𝐸𝐹𝑇 Scott Melville

6 Positivity in the Sky Scott Melville PASCOS 01 Jul 2019 Energy π΄π‘ˆπ‘‰ ?
𝐴𝐸𝐹𝑇 Scott Melville

7 Positivity in the Sky Scott Melville PASCOS 01 Jul 2019 Energy
UV Properties π΄π‘ˆπ‘‰ ? IR Parameters 𝐴𝐸𝐹𝑇 Scott Melville

8 Outline hep-ph/9607351 Donoghue
Let me start by describing the literature. There have been an explosion of papers on this subject recently, and they fall neatly into two categories. Outline hep-ph/ Donoghue

9 Positivity Constraints Dark Energy SMEFT
Big Picture Positivity Constraints Dark Energy SMEFT Only some EFTs have β€œgood” UV completions … and this gives us constraining power! Horndeski parameters improved by factor 110 VBS parameters improved by factor ~100 These constraints have really come into their own in the last few years. The central ideas were laid out in 2006, and then we got to work developing all of the formalism and technical details, and now we’re finally in a position to apply the resulting constraints to all kinds of theories. The nitty-gritty details can be found in the papers, but for today I want to paint a broad picture of what’s going on and why. Outline hep-ph/ Donoghue

10 Positivity Constraints Dark Energy SMEFT
Big Picture Positivity Constraints Dark Energy SMEFT Only some EFTs have β€œgood” UV completions … and this gives us constraining power! Horndeski parameter space reduced by factor 110 VBS parameters improved by factor ~100 These constraints have really come into their own in the last few years. The central ideas were laid out in 2006, and then we got to work developing all of the formalism and technical details, and now we’re finally in a position to apply the resulting constraints to all kinds of theories. The nitty-gritty details can be found in the papers, but for today I want to paint a broad picture of what’s going on and why. Outline hep-ph/ Donoghue

11 Positivity Constraints Dark Energy SMEFT
Where do they come from? hep-ph/ Donoghue Bellazzini hep-th/ Adams et al SM et al hep-th/ Jenkins et al SM et al Big Picture Positivity Constraints Dark Energy SMEFT Only some EFTs have β€œgood” UV completions What good are they? … and this gives us constraining power! Dvali Baumann et al SM et al Adams et al Bellazzini et al Zhang, Zhou Bellazzini et al Β  Cheung et al Bonifacio et al Β  Cheung et al Bellazzini SM et al SM et al Horndeski parameter space reduced by factor 110 VBS parameters improved by factor ~100 References: Donoghue hep-ph/ EFTs and Dispersion relations Adams et al., hep-th/ Causality, Analyticity and an IR Obstruction to UV Completion SM, de Rham, Tolley, Zhou , Positivity Bounds for Effective Field Theories hep-th/ Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi de Rham, SM, Tolley, Zhou Noller, Nicola SM, Noller These constraints have really come into their own in the last few years. The central ideas were laid out in 2006, and then we got to work developing all of the formalism and technical details, and now we’re finally in a position to apply the resulting constraints to all kinds of theories. The nitty-gritty details can be found in the papers, but for today I want to paint a broad picture of what’s going on and why. [ ] Outline hep-ph/ Donoghue

12 [ ] Positivity

13 UV IR Can have classicalization in other places [ ] Positivity

14 UV IR General Relativity Positivity [1904.05874]
Can have classicalization in other places [ ] Positivity

15 UV IR New physics General Relativity Positivity [1904.05874]
Can have classicalization in other places [ ] Positivity

16 𝑀 UV ??? IR New physics General Relativity Positivity [1904.05874]
Can have classicalization in other places [ ] Positivity

17 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity Positivity
𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR General Relativity Can have classicalization in other places [ ] Positivity

18 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + Known operator basis IR General Relativity This lets us calculate things without needing to worry about the complicated underlying UV physics. e.g. 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… [ ] Positivity

19 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + Known operator basis IR General Relativity with undetermined coefficients BUT, the price to pay is that each local operator gets its own undetermined coefficient. I’ll refer to these as EFT parameters, Wilson coefficients, or couplings. e.g. 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… [ ] Positivity

20 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + Known operator basis IR General Relativity with undetermined coefficients Problem number 1: often there are many operators to consider, even at relatively small n. We need to make AT LEAST this many independent measurements in order to fix c_n and make the theory predictive. In the SM, working with the leading order dimension 4 operators gives 19 undetermined parameters. In GR there’s all contractions of Ricci Scalar, Ricci Tensor and Riemann and their derivatives, and so we’d need to make a lot of very precise quantum gravity measurements in order to make this GR EFT predictive beyond leading orders. e.g. 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements [ ] Positivity

21 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + Known operator basis IR General Relativity with undetermined coefficients Because we’ve given up on understanding the UV, no amount of testing or experimentation can reveal fundamental truths about the underlying physics on very small length scales. This isn’t a very satisfying state of affairs. e.g. 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

22 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + Known operator basis IR General Relativity with undetermined coefficients Because we’ve given up on understanding the UV, no amount of testing or experimentation can reveal fundamental truths about the underlying physics on very small length scales. This isn’t a very satisfying state of affairs. e.g. 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

23 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 𝑐 2 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

24 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

25 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

26 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Need many measurements (2) No deeper understanding of UV physics [ ] Positivity

27 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Data more constraining (2) No deeper understanding of UV physics [ ] Positivity

28 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 𝑐 2 πœ• 2 πœ™ 4 𝑀 2 + 𝑐 4 πœ• 4 πœ™ 4 𝑀 4 +… Data more constraining (2) Can infer UV properties from IR measurements [ ] Positivity

29 𝑀 UV ??? 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 + IR New physics General Relativity
Unitary, Causal, Local, … ??? 𝑀 𝑐 𝑛 𝑀 𝑛 π“ž 𝑛 𝑐 4 + IR General Relativity Any questions at this stage, about what we’re going to do or why it’s important 𝑐 2 Data more constraining Positivity Bounds (2) Can infer UV properties from IR measurements [ ] Positivity

30 π‘Ž π‘Ž ? 𝑏 𝑏 Being explicit, the positivity bounds which we’ll derive and use today are: [ ] Positivity

31 π‘Ž π‘Ž 𝑝 1 𝑝 3 ? 𝑝 2 𝑝 4 𝑏 𝑏 Positivity [1904.05874]
Being explicit, the positivity bounds which we’ll derive and use today are: [ ] Positivity

32 π‘Ž π‘Ž 𝑝 1 𝑝 3 ? 𝑝 2 𝑝 4 𝑏 𝑏 Positivity 𝑑=βˆ’ 𝑝 1 + 𝑝 3 2 𝑠=βˆ’ 𝑝 1 + 𝑝 2 2
𝑑=βˆ’ 𝑝 1 + 𝑝 3 2 π‘Ž π‘Ž 𝑝 1 𝑝 3 𝑠=βˆ’ 𝑝 1 + 𝑝 2 2 ? 𝑝 2 𝑝 4 𝑏 𝑏 Being explicit, the positivity bounds which we’ll derive and use today are: [ ] Positivity

33 𝐴 𝐸𝐹𝑇 𝑠,𝑑 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +…
𝑑=βˆ’ 𝑝 1 + 𝑝 3 2 π‘Ž π‘Ž 𝑝 1 𝑝 3 𝑠=βˆ’ 𝑝 1 + 𝑝 2 2 ? 𝑝 2 𝑝 4 𝑏 𝑏 𝐴 𝐸𝐹𝑇 𝑠,𝑑 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Being explicit, the positivity bounds which we’ll derive and use today are: [ ] Positivity

34 Unitarity, Causality, Locality of
𝑑=βˆ’ 𝑝 1 + 𝑝 3 2 π‘Ž π‘Ž 𝑝 1 𝑝 3 𝑠=βˆ’ 𝑝 1 + 𝑝 2 2 ? 𝑝 2 𝑝 4 𝑏 𝑏 𝐴 𝐸𝐹𝑇 𝑠,𝑑 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Being explicit, the positivity bounds which we’ll derive and use today are: Unitarity, Causality, Locality of ? β‡’ 𝑐 𝑠𝑠 >0 , 𝑐 𝑠𝑠𝑑 ≳0 [ ] Positivity

35 Simple UV Example UV IR [ ] Positivity

36 πœ‘ 𝐻 UV IR Simple UV Example 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 Positivity
1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 IR [ ] Positivity

37 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 UV IR Simple UV Example 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 Positivity
𝑔 𝐻 πœ‘ 2 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 IR [ ] Positivity

38 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 UV IR Simple UV Example 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 Positivity
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 IR [ ] Positivity

39 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 πœ‘ UV IR Simple UV Example 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑀 2
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ IR 1 π‘š 2 + 𝑝 2 [ ] Positivity

40 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 πœ‘ UV IR Simple UV Example 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑀 2
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… [ ] Positivity

41 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 πœ‘ UV IR 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 Simple UV Example
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 … +… = + + IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… [ ] Positivity

42 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 πœ‘ UV IR 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 Simple UV Example
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 … +… = + + IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 2 𝑔 2 𝑍 𝑀 4 𝑠 𝑔 2 𝑍 𝑀 6 𝑠 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… + + +… = [ ] Positivity

43 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 πœ‘ UV IR 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 Simple UV Example
𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 … +… = + + IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 2 𝑔 2 𝑍 𝑀 4 𝑠 𝑔 2 𝑍 𝑀 6 𝑠 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… + + +… = [ ] Positivity

44 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 Unitarity β‡’ 𝑍>0 πœ‘ Positive 𝑐 𝑛 UV IR 𝑐 0 πœ‘ 4
Simple UV Example UV πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 Unitarity β‡’ 𝑍>0 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 … Positive 𝑐 𝑛 +… = + + IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 2 𝑔 2 𝑍 𝑀 4 𝑠 𝑔 2 𝑍 𝑀 6 𝑠 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… + + +… = [ ] Positivity

45 πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 Causal + Local β‡’ Unitarity β‡’ 𝑍>0 Various Poles πœ‘
Simple UV Example UV πœ‘ 𝐻 𝑔 𝐻 πœ‘ 2 𝑝 1 𝑝 3 Causal + Local β‡’ Unitarity β‡’ 𝑍>0 Various Poles 𝑔 1 π‘š 2 + 𝑝 2 𝑍 𝑀 2 + 𝑝 2 𝑝 2 𝑔 2 𝑍 𝑀 2 βˆ’π‘  𝑝 4 𝑀 2 πœ‘ 𝑐 0 πœ‘ 4 𝑐 1 πœ• 2 πœ‘ 4 𝑐 2 πœ• 4 πœ‘ 4 … Positive 𝑐 𝑛 +… = + + IR 1 π‘š 2 + 𝑝 2 𝑔 2 𝑍 𝑀 2 𝑔 2 𝑍 𝑀 4 𝑠 𝑔 2 𝑍 𝑀 6 𝑠 2 𝑔 2 𝑍 𝑀 𝑠 𝑀 𝑠 2 𝑀 4 +… + + +… = [ ] Positivity

46 Unitarity, Causality, Locality of
𝑑=βˆ’ 𝑝 1 + 𝑝 3 2 π‘Ž π‘Ž 𝑝 1 𝑝 3 𝑠=βˆ’ 𝑝 1 + 𝑝 2 2 ? 𝑝 2 𝑝 4 𝑏 𝑏 𝐴 𝐸𝐹𝑇 𝑠,𝑑 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Unitarity, Causality, Locality of ? β‡’ 𝑐 𝑠𝑠 >0 , 𝑐 𝑠𝑠𝑑 ≳0 [ ] Positivity

47 [ ] Dark Energy

48 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor [ ] Dark Energy

49 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field [ ] Dark Energy

50 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 π›»πœ™ 4 … [ ] Dark Energy

51 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 π›»πœ™ 4 … π›»π›»πœ™ … π›»π›»πœ™ π›»πœ™ 2 [ ] Dark Energy

52 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 π›»πœ™ 4 … π›»π›»πœ™ … π›»π›»πœ™ π›»πœ™ 2 π›»π›»πœ™ 2 … [ ] Dark Energy

53 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 (𝑋=βˆ’ π›»πœ™ 2 ) 𝐺 2 𝑋 π›»πœ™ 4 … π›»π›»πœ™ … π›»π›»πœ™ π›»πœ™ 2 π›»π›»πœ™ 2 … [ ] Dark Energy

54 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 (𝑋=βˆ’ π›»πœ™ 2 ) 𝐺 2 𝑋 π›»πœ™ 4 … π›»π›»πœ™ … 𝐺 3 𝑋 𝛻 2 πœ™ π›»π›»πœ™ π›»πœ™ 2 π›»π›»πœ™ 2 … [ ] Dark Energy

55 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor Single Scalar Field π›»πœ™ 2 π›»πœ™ 6 (𝑋=βˆ’ π›»πœ™ 2 ) 𝐺 2 𝑋 π›»πœ™ 4 … π›»π›»πœ™ … 𝐺 3 𝑋 𝛻 2 πœ™ π›»π›»πœ™ π›»πœ™ 2 π›»π›»πœ™ 2 𝐺 4,𝑋 𝑋 π›»π›»πœ™ 2 … [ ] Dark Energy

56 Positivity in Horndeski
β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor [ ] Dark Energy

57 Positivity in Horndeski
(𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 [ ] Dark Energy

58 Positivity in Horndeski
(𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 Part of ``Horndeski’’ class [ ] Dark Energy

59 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… Positivity in Horndeski
(𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 Part of ``Horndeski’’ class πœ™ πœ™ 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… πœ™ πœ™ [ ] Dark Energy

60 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0
Positivity in Horndeski (𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 Part of ``Horndeski’’ class πœ™ πœ™ 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0 πœ™ πœ™ [ ] Dark Energy

61 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0
Positivity in Horndeski (𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 Part of ``Horndeski’’ class πœ™ πœ™ 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0 πœ™ πœ™ β„Ž πœ‡Ξ½ β„Ž πœ‡Ξ½ 𝐴 ~ 𝐺 4,𝑋 𝑠 2 +… πœ™ πœ™ [ ] Dark Energy

62 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0
Positivity in Horndeski (𝑋=βˆ’ π›»πœ™ 2 ) β„’= β„’ 𝐺𝑅 + 𝐺 4 𝑋 𝑅+ 𝐺 2 𝑋 + 𝐺 4,𝑋 (𝑋) (π›»π›»πœ™) 2 Part of ``Horndeski’’ class πœ™ πœ™ 𝐴 ~ 𝐺 2,𝑋𝑋 𝑠 2 βˆ’ 𝐺 4,𝑋𝑋 𝑠 2 𝑑+… 𝐺 2,𝑋𝑋 >0, βˆ’ 𝐺 4,𝑋𝑋 ≳0 πœ™ πœ™ β„Ž πœ‡Ξ½ β„Ž πœ‡Ξ½ 𝐴 ~ 𝐺 4,𝑋 𝑠 2 +… 𝐺 4,𝑋 >0 πœ™ πœ™ [ ] Dark Energy

63 Our Assumptions [ ] Dark Energy

64 Our Assumptions Flat space positivity continues to
hold on Cosmological background [ ] Dark Energy

65 Only 𝐺 2 (𝑋), 𝐺 4 (𝑋) Our Assumptions
Flat space positivity continues to hold on Cosmological background Particular subset of Horndeski 3 2 Only 𝐺 2 (𝑋), 𝐺 4 (𝑋) 5 4 [ ] Dark Energy

66 Only 𝐺 2 (𝑋), 𝐺 4 (𝑋) 𝐺 𝑛 𝑑 β†’ 𝑐 𝑛 Ξ© DE (𝑑) Our Assumptions
Flat space positivity continues to hold on Cosmological background Particular subset of Horndeski 3 2 Only 𝐺 2 (𝑋), 𝐺 4 (𝑋) 5 4 Particular parametrization 𝐺 𝑛 𝑑 β†’ 𝑐 𝑛 Ξ© DE (𝑑) 𝑑 [ ] Dark Energy

67 𝑐 𝐡 𝐺 2 𝑋 𝐺 4 (𝑋) 𝑐 𝑀 𝑐 𝑇 Dark Energy
Parameter estimation with positivity Scott Melville 𝑐 𝐡 β€˜Braiding’ (mixing of scalar and tensor) 𝐺 2 𝑋 𝐺 4 (𝑋) 𝑐 𝑀 Time-dependence of 𝑀 𝑃 (i.e. 𝐺 𝑁 ) 𝑐 𝑇 Gravitational wave speed [SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

68 𝑐 𝐡 𝑐 𝑀 𝑐 𝑇 Dark Energy Parameter estimation with positivity
Scott Melville 𝑐 𝐡 β€˜Braiding’ (mixing of scalar and tensor) 𝑐 𝑀 Time-dependence of 𝑀 𝑃 (i.e. 𝐺 𝑁 ) 𝑐 𝑇 Gravitational wave speed [SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

69 𝑐 𝐡 𝑐 𝑀 𝑐 𝑇 Dark Energy Parameter estimation with positivity
Scott Melville 𝑐 𝐡 β€˜Braiding’ (mixing of scalar and tensor) 𝑐 𝑀 Time-dependence of 𝑀 𝑃 (i.e. 𝐺 𝑁 ) 𝑐 𝑇 Gravitational wave speed [SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

70 Dark Energy Parameter estimation with positivity Scott Melville
[SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

71 CMB (Planck 2015) BAO (SDSS/BOSS) RSD (BOSS/6dF) Matter (SDSS DR4 LRG)
Parameter estimation with positivity Scott Melville CMB (Planck 2015) BAO (SDSS/BOSS) RSD (BOSS/6dF) Matter (SDSS DR4 LRG) [SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

72 CMB (Planck 2015) BAO (SDSS/BOSS) RSD (BOSS/6dF) Matter (SDSS DR4 LRG)
Parameter estimation with positivity Scott Melville CMB (Planck 2015) BAO (SDSS/BOSS) RSD (BOSS/6dF) Matter (SDSS DR4 LRG) [SM, Noller, 1904.xxxxx] Contours mark 1 and 2 condence intervals, computed using CMB, RSD, BAO and matter power spectrum measurements. [ ] Dark Energy

73 𝑐 𝑇 <0 CMB BAO RSD Matter Dark Energy
Parameter estimation with positivity Scott Melville CMB BAO RSD Matter Prior I: πœ™ β„Ž πœ‡Ξ½ [SM, Noller, 1904.xxxxx] 𝑐 𝑇 <0 [ ] Dark Energy

74 𝑐 𝑇 <0 𝑐 𝐡 <2 𝑐 𝑇 CMB BAO RSD Matter Dark Energy
Parameter estimation with positivity Scott Melville CMB BAO RSD Matter Prior I: πœ™ β„Ž πœ‡Ξ½ 𝑐 𝑇 <0 Prior II: πœ™ 𝑐 𝐡 <2 𝑐 𝑇 [ ] Dark Energy

75 𝑐 𝑇 <0 𝑐 𝐡 <2 𝑐 𝑇 CMB BAO RSD Matter Dark Energy
Parameter estimation with positivity Scott Melville CMB BAO RSD Matter Prior I: πœ™ β„Ž πœ‡Ξ½ [SM, Noller, 1904.xxxxx] 𝑐 𝑇 <0 Prior II: Data is more constraining πœ™ 𝑐 𝐡 <2 𝑐 𝑇 [ ] Dark Energy

76 Data more constraining
Parameter estimation with positivity Scott Melville CMB BAO RSD Matter Prior I: πœ™ β„Ž πœ‡Ξ½ [SM, Noller, 1904.xxxxx] 𝑐 𝑇 <0 Positivity Data more constraining Prior II: β‡’ In future, more data will shrink these contours even further. πœ™ 𝑐 𝐡 <2 𝑐 𝑇 [ ] Dark Energy

77 [ ] Summary

78 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +…
π‘Ž π‘Ž 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Unitary, causal, local 𝑐 𝑠𝑠 >0 , 𝑐 𝑠𝑠𝑑 ≳0 𝑏 𝑏 [ ] Summary

79 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +…
π‘Ž π‘Ž 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Unitary, causal, local 𝑐 𝑠𝑠 >0 , 𝑐 𝑠𝑠𝑑 ≳0 𝑏 𝑏 Dark Energy [ ] [ ] Summary

80 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +…
π‘Ž π‘Ž 𝐴 𝐸𝐹𝑇 𝑠 = 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 + 𝑐 𝑠𝑠𝑑 𝑠 2 𝑑 𝑀 6 +… Unitary, causal, local 𝑐 𝑠𝑠 >0 , 𝑐 𝑠𝑠𝑑 ≳0 𝑏 𝑏 Dark Energy Up next: [ ] Improved positivity bounds Inflation Beyond Standard Model [ ] Summary

81 Backup Slides Backup Slides

82 General UV IR UV Positivity Constraints

83 General UV 𝐴 EFT (𝑠) IR UV Positivity Constraints

84 General UV ??? 𝐴 EFT (𝑠) 𝐴 UV (𝑠) 𝑀 IR UV Positivity Constraints

85 General UV 𝑠 𝑀 𝐴 EFT (𝑠) 𝐴 UV (𝑠) IR UV Positivity Constraints

86 Causality 𝐴 EFT (𝑠) 𝐴 UV (𝑠) IR UV General UV
𝑀 𝐴 EFT (𝑠) 𝐴 UV (𝑠) IR UV Causality β‡’ 𝐴 𝑠 is analytic (up to known poles & branch cuts) Positivity Constraints

87 Causality 𝐴 EFT (𝑠) 𝐴 UV (𝑠) - - IR UV General UV
𝑀 𝐴 EFT (𝑠) 𝐴 UV (𝑠) - - βˆ’π‘‘ π‘š 2 IR 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 UV Causality β‡’ 𝐴 𝑠 is analytic (up to known poles & branch cuts) Positivity Constraints

88 Causality - - General UV
𝑠 𝑀 𝐢 - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 Causality β‡’ 𝐴 𝑠 is analytic (up to known poles & branch cuts) Positivity Constraints

89 = - - - - General UV (Causality) 𝑀 𝐢 𝑀 𝐢 Positivity Constraints 𝑠 βˆ’π‘‘
x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 = (Causality) 𝑠 𝑀 𝐢 - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 Positivity Constraints

90 = - - - - General UV (Causality) 𝑀 𝐢 𝑀 Positivity Constraints 𝑠 βˆ’π‘‘ π‘š 2
x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 = (Causality) 𝑠 ∞ 𝑀 - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 ∞ Positivity Constraints

91 𝐴 𝐸𝐹𝑇 (𝑠) = - - - General UV (Causality) 𝑀 𝐢 𝑀 Positivity Constraints
π‘š 2 4 π‘š 2 3 π‘š 2 βˆ’π‘‘ βˆ’π‘‘ 𝐢 x General UV 𝐴 𝐸𝐹𝑇 (𝑠) = (Causality) 𝑠 ∞ 𝑀 - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 ∞ Positivity Constraints

92 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞)
- 𝑠 𝑀 π‘š 2 4 π‘š 2 3 π‘š 2 βˆ’π‘‘ βˆ’π‘‘ 𝐢 x General UV 𝐴 𝐸𝐹𝑇 (𝑠) = (Causality) 𝑠 ∞ 𝑀 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞) - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 ∞ Positivity Constraints

93 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞)
- 𝑠 𝑀 π‘š 2 4 π‘š 2 3 π‘š 2 βˆ’π‘‘ βˆ’π‘‘ 𝐢 x General UV 𝐴 𝐸𝐹𝑇 (𝑠) = (Causality) 𝑠 ∞ 𝑀 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞) - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 Positive (Unitarity) ∞ Positivity Constraints

94 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞)
- 𝑠 𝑀 π‘š 2 4 π‘š 2 3 π‘š 2 βˆ’π‘‘ βˆ’π‘‘ 𝐢 x General UV 𝐴 𝐸𝐹𝑇 (𝑠) = (Causality) 𝑠 ∞ 𝑀 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞) - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 Positive < 𝑠 2 (Unitarity) (Locality) ∞ Positivity Constraints

95 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞)
- 𝑠 𝑀 π‘š 2 4 π‘š 2 3 π‘š 2 βˆ’π‘‘ βˆ’π‘‘ 𝐢 x General UV 𝑐 0 + 𝑐 𝑠𝑠 𝑠 2 𝑀 4 +… 𝑐 𝑠𝑠 >0 = 𝐴 𝐸𝐹𝑇 (𝑠) = (Causality) 𝑠 ∞ 𝑀 Poles+Im 𝐴 π‘ˆπ‘‰ (𝑠)+ 𝐴 π‘ˆπ‘‰ (∞) - - x βˆ’π‘‘ π‘š 2 3 π‘š 2 βˆ’π‘‘ 4 π‘š 2 Positive < 𝑠 2 (Unitarity) (Locality) ∞ Positivity Constraints

96 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor - Uniqueness? [ ] Dark Energy

97 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor - Uniqueness? - New Experimental Tests [ ] Dark Energy

98 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor - Uniqueness? - New Experimental Tests - Naturalness Arguments [ ] Dark Energy

99 β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor
Scalar-Tensor Theories β„’= β„’ 𝐺𝑅 + β„’ Scalarβˆ’Tensor - Uniqueness? - New Experimental Tests - Naturalness Arguments - Possible UV Completions [ ] Dark Energy


Download ppt "PASCOS 01 Jul 2019 Positivity in the Sky Scott Melville."

Similar presentations


Ads by Google