Download presentation
Presentation is loading. Please wait.
1
Teaching Recurrent NN to be Dynamical Systems
2
Homogeneous Linear Systems
(no inputs) Example:
3
Discrete time recurrent networks
External Input Weights V Inputs u Outputs Recurrent Weights W f y1 y2 yn
4
Non-Linear sin wave generator example
Teacher y1 y2 w12 w11 w22 b2 b1 w21 Limit cycle attractor
5
t(n) u(n) y1(n) y2(n) t(n - k) y1(n - k) y2(n - k) u(n - k) t(2) y1(2) u(2) y2(2) t(1) y1(1) u(1) y2(1) t(0) y1(0) y2(0)
6
Parenthesis balancing Turing Machine
A before B A B OUT input input Parenthesis balancing Turing Machine …( ( ) ( ) ) )… FSM Tape
7
Recurrent NN model of active memory Load-in Info-in Info-in Load-in
1 2 n … Load-in Info-in Out
8
Testing Spiking Info-in load-in Hidden-1 Hidden-2 Hidden-3 Hidden-4
Out
9
{ { Color match to sample Recorded in IT Red Neuron 1 Green Red
19 1 Sample Delay Match
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.