Download presentation
Presentation is loading. Please wait.
Published byJonathan Bradley Modified over 5 years ago
1
Theorem 1: A B C D a b If a = b, then AB // CD (alt. s eq.) Theorem 4 : A B C D a b If AB // CD then a = b (alt. s, AB // CD)
2
Theorem 2: A B C D a b If a = b, then AB // CD (corr. s eq.) Theorem 5 : A B C D a b If AB // CD then a = b (corr. s, AB // CD)
3
Theorem 3: A B C D a b If a + b = 1800, then AB // CD (int. s supp.) Theorem 6 : A B C D a b If AB // CD then a + b = 1800 (int. s, AB // CD)
4
Theorem 7 : If AB // CD and EF // CD then AB // EF (transitive property of // lines) A B E D C F a A B Proof: a = b (corr. s, AB // CD) c = b (corr. s, EF // CD) i.e. a = c AB // EF (corr. s, eq) b C D c E F
5
Example 1: In the figure, AB // CD and b = d. Prove that CB // ED
Proof: Let BCD = c. AB // CD (given) b = c (alt. s, AB // CD) b = d (given) i.e. c = d CB // ED (alt. s, eq)
6
Example 2:ABC =1800 ,BCD=700 and CDE=1600 . Prove that AB // ED
Proof: Construct FG passing through C and parallel to AB FG // AB (by construction) ABC +x=1800 (int. s, AB // FC) x= x = x + y = (given) y = 200 CDE+y = =1800 FG // ED (int. s, supp) FG // AB and FG // ED AB // ED (transitive property of // lines) A B C E D 1300 700 1600 F G x y
7
Example 3: In ABC, BD=DE and DE // BC
Example 3: In ABC, BD=DE and DE // BC. Prove the BE is the angle bisector of ABC . Proof: DBE =DEB (base s, isos. ) DEB =EBC (alt s, DE//BC) DBE =EBC BE is the angle bisector of ABC . A D E B C
8
Theorem 8: B A C d a b d = a + b (ext. s of ) D B A C D a b E Proof: Construct CE //AB f g g = b (corr, s , BA//CE ) f = a (alt, s , BA//CE ) f + g = a+b d = a+b
9
Theorem 9: B A a b c The sum of interior angles is (ext. s of ) A Proof: Construct CE //AB a d+c = 1800 (adj. s on a st. line ) d = a+b (ext. s of ) d b c B C D a + b + c = 1800
10
Example 4: AED and BEC are straight lines and x + y = 900
Example 4: AED and BEC are straight lines and x + y = 900. Prove the BE is the angle bisector of ABC . In ABC, p+2x+y = 1800 ( sum of ) p = 1800 –2x-y ……(1) In ADC, x+2y+q = 1800 ( sum of ) q = 1800 –x-2y ……(1) (1) + (2), p+q = (1800 –2x-y )+ (1800 –x-2y ) = 3600 –3(x+y ) = 3600 –3(900) (given) = 900 B A C D E x y p q
11
Example 5: AEF, AEC and BED are straight lines and p + q = 1200
Example 5: AEF, AEC and BED are straight lines and p + q = Prove that y = x D A E C B F q y p x In ABD, DBF=p+2x (ext. of ) 2y = p+2x ……(1) In ABC, CBF=q+x (ext. of ) y = q+x ……(2) (1) + (2), 2y+y = p+2x+q+x 3y = 3x +p+q 3y = 3x (given) y = x+400
12
Similar Triangles ABC DEF (corr. sides, s)
If 2 triangles are similar then their corresponding sides same in ratio ABC DEF (Given) (corr. sides, s) If the corresponding sides of two triangles are proportional, then these triangles are similar. (3 sides proportional) ABC DEF (3 sides prop.)
13
If 2 triangles are similar then their corresponding angles are equal
ABC DEF (Given) ABC=DEF BCA=EFD CAB=FDE (corr. s, s) If the corresponding angles are equal then these triangles are similar. ABC=DEF BCA=EFD CAB=FDE ABC DEF (equiangular or AAA)
14
If 2 triangles are similar then two corresponding sides are same in ratio and included angle is equal ABC DEF (Given) (corr. sides, s) ABC=DEF (corr. s, s) If two corresponding sides of two triangles are of same ratio and the included angles are equal, then these triangles are similar. ABC=DEF ABC DEF (ratio of 2 sides, inc. )
15
A B C 4.5 6 7.5 370 530 Example 6 3 P Q R 4 5 (a) Prove that ABC PQR (b) Find P Solution (a) Solution (b) A =1800 ( sum of ) A=900 P= A (corr. s, s) P= 900 i.e. ABC PQR (3 sides prop.)
16
A B C H K 4 6 a b c h k 3 Example 7 In ABC, HK//BC, HK=4, BC=6 and HB=3. (a) Prove that AHK ABC (b) Find that length of AH Solution (b) Solution (a) (corr. sides, s) In AHK and ABC k=c (corr. s, HK//BC) h=b (corr. s, HK//BC) a=a (common angle) 6AH=12+4AH AHK ABC (A.A.A.) 2AH=12 AH=6
17
Example 8 D A B C 15 9 6 K 12 8 AKC and DKB are straight lines (a) Prove that ABK CDK (b) Find that length of AB Solution (b) Solution (a) (corr. sides, s) i.e. (vert. opp, s) AKB=CKD ABK CDK (ratio of 2 sides, inc. )
18
CH 10B (Q10) A B D F E C 22 14 12 p q s r 8 r = 11 (corr. sides, s)
CBD=EBF (common angle) BCD=BEF (corr. s, CD//EF) BDC=BFE (corr. s, CD//EF) BCD BEF (A.A.A) (corr. sides, s) In FCD and FAB CFD=AFB (common angle) FCD=FAB (corr. s, CD//AB) FDC=FBA (corr. s, CD//AB) FCD FAB (A.A.A) (corr. sides, s) (corr. sides, s) (corr. sides, s) r = 11
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.