Download presentation
Presentation is loading. Please wait.
1
20170234 Park Gunsu 20170368 An Daehyun 20180182 Kim Haram
Unruh Effect Park Gunsu An Daehyun Kim Haram
2
Intro INERTIAL REFERENCE FRAME!
𝑑 𝜏 2 =𝑑 𝑡 2 − 𝐻 −2 cosh 2 𝐻𝑡 (𝑑 𝜉 2 + sin 2 𝜉 𝑑 Ω 2 ) 𝑑 𝜏 2 =𝑑 𝑡 2 − exp 2𝐻𝑡 (𝑑 𝑟 2 + 𝑟 2 𝑑 Ω 2 ) 𝑑 𝜏 2 =𝑑 𝑡 2 − 𝐻 −2 sinh 2 𝐻𝑡 (𝑑 𝜉 2 + sinh 2 𝜉 𝑑 Ω 2 ) 𝑑 𝜏 2 = 1− 𝐻 2 𝑡 2 𝑑 𝑡 2 − 𝑑 𝑟 2 1− 𝐻 2 𝑡 2 − 𝑟 2 𝑑 Ω 2 INERTIAL REFERENCE FRAME! Reference : Lecture note of PH471-Relativity-De Sitter space
3
Ordinary Minkowski Space
𝑑 𝜏 2 =𝑑 𝑡 2 −(𝑑 𝑥 2 +𝑑 𝑦 2 +𝑑 𝑧 2 ) Reference :
4
Constantly Accelerating Object
Reference :
5
Rindler Space 𝑥=𝜌 cosh 𝜎 𝑡=𝜌 sinℎ(𝜎) 𝑑 𝜏 2 = 𝜌 2 𝑑 𝜎 2 −d 𝜌 2
World line of constantly accelerating object : 𝜌 = 1/𝑎 𝜎 = 𝑎𝜏 where 𝜏 is observer's proper time Reference:
6
Rindler Horizon Reference :
7
Rindler Horizon Inertia from an asymmetric Casim ir effect
Reference : Inertia from an Asymmetric Casimir Effect(M.E. McCulloch,2013)
8
Hawking Radiation Press Release: Violent Acceleration and the Event Horizon Reference : Press Release: Violent Acceleration and the Event Horizon(Dr. Pisin Chen ,2000)
9
Warm Vacuum Expectation value of number operator of vacuum
<𝑁> = 2𝜋 𝑒 2𝜋𝜔/𝑎 −1 𝛿(0) Similar form with Planck distribution 1 𝑒 ℏ𝜔 𝑘 𝐵 𝑇 −1 From this analogy, Unruh temperature becomes 𝑇= ℏ𝑎 2𝜋𝑐 𝑘 𝐵
10
Decay of Accelerating Particle
Reference : Decay of accelerated particles(Rainer Müller,1997)
11
Experiment to Test Unruh Effect
Reference :
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.