Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solve the equations. 4 2

Similar presentations


Presentation on theme: "Solve the equations. 4 2"β€” Presentation transcript:

1 Solve the equations. 4 2π‘₯ = 8 π‘₯+7 π‘™π‘œπ‘” 125 25 8 5π‘₯ = 64 5π‘₯βˆ’5 π‘™π‘œπ‘” 7 49
Warm Up Solve the equations. 4 2π‘₯ = 8 π‘₯+7 π‘™π‘œπ‘” 8 5π‘₯ = 64 5π‘₯βˆ’5 π‘™π‘œπ‘” 7 49

2 Solving Logarithmic Equations
Lessons Solving Logarithmic Equations (log on one side) (log on both sides) Product Rule Quotient Rule Power Rule Solving Logs

3 Solving Logarithm Equations with a logarithm on one side and a number on the other
π’π’π’ˆ πŸ’ 𝒙= πŸ“ 𝟐

4 7.4 Logarithm Equations Let’s begin this lesson with a puzzle.
See if you can figure out a way to solve the following questions based on the previous lesson.

5 π‘™π‘œπ‘” 9 π‘₯= 3 2 7.4 Logarithm Equations
Convert the logarithm equation into an exponential equation to solve NO MATTER where the π‘₯ is! π‘™π‘œπ‘” 9 π‘₯= 3 2

6 Solve the following logarithmic equations. π‘™π‘œπ‘” 16 π‘₯= 5 2 π‘™π‘œπ‘” 81 π‘₯= 3 4
Practice Solve the following logarithmic equations. π‘™π‘œπ‘” 16 π‘₯= 5 2 π‘™π‘œπ‘” 81 π‘₯= 3 4

7 Solving Logarithm Equations with a logarithm both sides
π’π’π’ˆ πŸ“ 𝒙+ π’π’π’ˆ πŸ“ πŸ‘= π’π’π’ˆ πŸ“ πŸ”

8 The bases must be the same!
7.5 Properties Where have we talked about the β€œProperty of Equality” before? If π‘™π‘œπ‘” 𝑏 π‘₯= π‘™π‘œπ‘” 𝑏 𝑦, then π‘₯=𝑦. The bases must be the same! Example: π‘™π‘œπ‘” 10 π‘₯= π‘™π‘œπ‘” 10 (5π‘₯βˆ’20) β€œdelete the logs”

9 Practice Solve the following logarithmic equations.
π‘™π‘œπ‘” 4 π‘₯ 2 = π‘™π‘œπ‘” 4 (βˆ’6π‘₯βˆ’8) π‘™π‘œπ‘” 3 π‘₯ 2 βˆ’15 = π‘™π‘œπ‘” 3 2π‘₯

10 You Try!!! Solve the following logarithmic equations.
π‘™π‘œπ‘” 2 π‘₯βˆ’4 = π‘™π‘œπ‘” 2 3π‘₯ π‘™π‘œπ‘” 5 π‘₯ 2 βˆ’10 = π‘™π‘œπ‘” 5 3π‘₯

11 Product Property of Logarithms π‘™π‘œπ‘” 𝑏 π‘₯𝑦 = π‘™π‘œπ‘” 𝑏 π‘₯+ π‘™π‘œπ‘” 𝑏 𝑦
Logarithm of a Product Product Property of Logarithms π‘™π‘œπ‘” 𝑏 π‘₯𝑦 = π‘™π‘œπ‘” 𝑏 π‘₯+ π‘™π‘œπ‘” 𝑏 𝑦

12 Express as a sum of logarithms. π‘™π‘œπ‘” π‘Ž 16βˆ—32 π‘™π‘œπ‘” 𝑏 (8βˆ—16) π‘™π‘œπ‘” 𝑧 (3π‘Žπ‘)
Practice β€œthe log of a product is the sum of the logs” Express as a sum of logarithms. π‘™π‘œπ‘” π‘Ž 16βˆ—32 π‘™π‘œπ‘” 𝑏 (8βˆ—16) π‘™π‘œπ‘” 𝑧 (3π‘Žπ‘)

13 Practice Express as a single logarithms. π‘™π‘œπ‘” 𝑦 65+ π‘™π‘œπ‘” 𝑦 2
β€œthe sum of the logs is the log of the products” Express as a single logarithms. π‘™π‘œπ‘” 𝑦 65+ π‘™π‘œπ‘” 𝑦 2 π‘™π‘œπ‘” 𝑏 𝐻+ π‘™π‘œπ‘” 𝑏 K π‘™π‘œπ‘” π‘˜ 8+ π‘™π‘œπ‘” π‘˜ π‘Ž

14 Logarithm of a Quotient
Quotient Property of Logarithms π‘™π‘œπ‘” 𝑏 π‘₯ 𝑦 = π‘™π‘œπ‘” 𝑏 π‘₯βˆ’ π‘™π‘œπ‘” 𝑏 𝑦

15 Express as a difference of logarithms. π‘™π‘œπ‘” π‘˜ 6 5 π‘™π‘œπ‘” 𝑏 𝑦 π‘₯ π‘™π‘œπ‘” 𝑧 8 3
Practice β€œthe log of a quotient is the difference of the logs” Express as a difference of logarithms. π‘™π‘œπ‘” π‘˜ 6 5 π‘™π‘œπ‘” 𝑏 𝑦 π‘₯ π‘™π‘œπ‘” 𝑧 8 3

16 Practice Express as a single logarithm. π‘™π‘œπ‘” π‘˜ 42βˆ’ π‘™π‘œπ‘” π‘˜ 7
β€œthe difference of the logs is the log of the quotient” Express as a single logarithm. π‘™π‘œπ‘” π‘˜ 42βˆ’ π‘™π‘œπ‘” π‘˜ 7 π‘™π‘œπ‘” 𝑏 π΄βˆ’ π‘™π‘œπ‘” 𝑏 𝐢 π‘™π‘œπ‘” 𝑑 5βˆ’ π‘™π‘œπ‘” 𝑑 13

17 Power Property of Logarithms π‘™π‘œπ‘” 𝑏 π‘₯ π‘Ž = π‘Žβˆ—π‘™π‘œπ‘” 𝑏 π‘₯
Logarithm of a Power Power Property of Logarithms π‘™π‘œπ‘” 𝑏 π‘₯ π‘Ž = π‘Žβˆ—π‘™π‘œπ‘” 𝑏 π‘₯

18 Express as a product. π‘™π‘œπ‘” 𝑏 𝑑 2 π‘™π‘œπ‘” 3 𝑀 βˆ’2
Practice Express as a product. π‘™π‘œπ‘” 𝑏 𝑑 2 π‘™π‘œπ‘” 3 𝑀 βˆ’2

19 Express as a single logarithm. 5 π‘™π‘œπ‘” 𝑏 2 βˆ’2π‘™π‘œπ‘” 3 10
Practice Express as a single logarithm. 5 π‘™π‘œπ‘” 𝑏 2 βˆ’2π‘™π‘œπ‘” 3 10

20 Solving Logarithms Use a property of logarithms to combine the left side of the equation. Use the equality property of logarithms to write a new equation. Solve the equation for π‘₯.

21 Practice Solve each equation. π‘™π‘œπ‘” 6 π‘₯+ π‘™π‘œπ‘” 6 9= π‘™π‘œπ‘” 6 54
π‘™π‘œπ‘” 9 3π‘₯+14 βˆ’ π‘™π‘œπ‘” 9 5= π‘™π‘œπ‘” 9 2π‘₯

22 Practice Solve each equation. 4π‘™π‘œπ‘” 2 π‘₯+ π‘™π‘œπ‘” 2 5= π‘™π‘œπ‘” 2 405
π‘™π‘œπ‘” 3 𝑦=βˆ’ π‘™π‘œπ‘” π‘™π‘œπ‘” 3 64

23 YOU TRY!!! π‘™π‘œπ‘” 8 48βˆ’ π‘™π‘œπ‘” 8 𝑀= π‘™π‘œπ‘” 8 4 Solve each equation.
π‘™π‘œπ‘” 2 π‘₯=5 π‘™π‘œπ‘” 2 2βˆ’ π‘™π‘œπ‘” 2 8

24 HOMEWORK Lesson Pg. 480 #’s 11-15 Pg. 488 #’s 23-26


Download ppt "Solve the equations. 4 2"

Similar presentations


Ads by Google