Download presentation
Presentation is loading. Please wait.
Published byJerónimo Cabral Modified over 5 years ago
1
Part II White Parts from: Technical overview for machine-learning researcher – slides from UAI 1999 tutorial
2
Reminder on Dirichlet distribution
Definition: The Dirichlet density function with parameters α1,…, αm, where αi are real numbers > 0, is 𝑝 𝜃1,…,𝜃𝑚 =𝜃 Γ( 𝑖=1 𝑚 αi ) 𝑖=1 𝑚 Γ(αi ) 𝑖=1 𝑚 𝜃𝑖 αi−1 where 0 ≤𝜃𝑖≤1 and 𝑖=1 𝑚 𝜃i = 1 The constant is determined such that 0 1 𝑝 𝜃 𝑑𝜃=1 . Notably, Γ(n)= (n-1)! Example: The Dirichlet imaginary sample size for two binary variable Markov network is say N’=12 and each option is seen a fraction of say (1/4, 1/6, 1/4, 1/3) times, namely α=(3,2,3,4). X Y
3
Dir(3,2,3,4) Dir(5,7) Dir(3,2) Dir(3, 4) Dir(6,6) Dir(3,3) Dir(2,4)
X Y Dir(3,2,3,4) X Y Dir(5,7) Dir(3,2) Dir(3, 4) X Y Dir(6,6) Dir(3,3) Dir(2,4) 𝐷𝑎𝑡𝑎={ 𝑥,𝑦 ,(𝑥, 𝑦 )}
4
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 𝑠ℎ𝑜𝑢𝑙𝑑 𝑔𝑖𝑣𝑒 𝑟𝑖𝑠𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑐𝑜𝑟𝑒.
X Y Dir(3,2,3,4) X Y Dir(5,7) Dir(3,2) Dir(3, 4) X Y Dir(6,6) Dir(3,3) Dir(2,4) 𝐷𝑎𝑡𝑎={ 𝑥,𝑦 ,(𝑥, 𝑦 )} 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 𝑠ℎ𝑜𝑢𝑙𝑑 𝑔𝑖𝑣𝑒 𝑟𝑖𝑠𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑐𝑜𝑟𝑒.
8
So how to generate parameter priors?
Example: Suppose the hyper distribution for (X1,X2) is Dir( a00, a01 ,a10, a11).
9
Example: Suppose the hyper distribution for (X1,X2) is Dir(α00, α01 , α10, α11)
This determines a Dirichlet distribution for the parameters of both directed models.
11
Summary: Suppose the parameters for (X1,X2) are distributed Dir(α00, α01 , α10, α11).
Then, parameters for X1 are distributed Dir(α00+ α01 , α10+ α11). Similarly, parameters for X2 are distributed Dir(α00+ α10 , α01+ α11).
12
BDe score:
15
Functional Equations Example
Example: f(x+y) = f(x) f(y) Solution: (ln f )`(x+y) = (ln f )`(x) and so: (ln f )`(x) = constant Hence: (ln f )(x) = linear function hence: f(x) = c eax Assumptions: Positive everywhere, Differentiable
16
The bivariate discrete case
17
The bivariate discrete case
18
The bivariate discrete case
19
The bivariate discrete case
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.