Presentation is loading. Please wait.

Presentation is loading. Please wait.

He Zhang MEIC R&D Meeting, 07/09/2015

Similar presentations


Presentation on theme: "He Zhang MEIC R&D Meeting, 07/09/2015"β€” Presentation transcript:

1 He Zhang MEIC R&D Meeting, 07/09/2015
Effect of the Electron Beam Momentum Spread on Friction Force and Cooling Rate for MEIC He Zhang MEIC R&D Meeting, 07/09/2015

2 Magnetized Friction Force
Parkhomchuk formula: 𝑭=βˆ’π‘½ 4 𝑍 2 𝑒 4 𝑛 𝑒 𝐿 𝑝 π‘š 𝑉 2 + Ξ” 𝑒,𝑒𝑓𝑓 Ion beam 𝑉 2 = 𝑉 βŠ₯ 2 + 𝑉 βˆ₯ 2 Electron beam Ξ” 𝑒,𝑒𝑓𝑓 2 = 𝑣 𝑒𝑓𝑓 2 + 𝑣 𝑒,βˆ₯ 2 𝐿 𝑝 has a weak dependence on 𝑣 𝑒,βˆ₯ , ignore it. Consider a proton beam at 100 GeV. Normalized emittance 0.3 um. Momentum spread ~ 10 βˆ’4 . Cooler length 30m. 𝛽 βŠ₯ =10 m, 𝛼 βŠ₯ =0 at the center of the cooler. 𝛾=108.4, 𝛽= 𝜎= 𝛽 βŠ₯ β‹… πœ€ 𝑛 𝛽𝛾 =0.166 mm, 𝜎 β€² = πœ€ 𝜎 = πœ€ 𝑛 π›½π›ΎπœŽ =1.66Γ—1 0 βˆ’5 . 𝑉 βŠ₯,π‘™π‘Žπ‘ = 𝜎 β€² 𝛽𝑐=4990 m/s, 𝑉 βŠ₯ =𝛾 𝑉 βŠ₯,π‘™π‘Žπ‘ =5.41Γ— m/s Assuming momentum spread 5Γ— 10 βˆ’4 , 𝑉 βˆ₯ = 𝑉 βˆ₯,π‘™π‘Žπ‘ =1.5Γ— m/s 𝑉 2 = 𝑉 βŠ₯ 2 + 𝑉 βˆ₯ 2 =31Γ— m2/s2, 𝑉=5.6Γ— m/s He Zhang

3 Magnetized Friction Force
Electron beam Ξ” 𝑒,𝑒𝑓𝑓 2 = 𝑣 𝑒𝑓𝑓 2 + 𝑣 𝑒,βˆ₯ 2 𝑭=βˆ’π‘½ 4 𝑍 2 𝑒 4 𝑛 𝑒 𝐿 𝑝 π‘š 1 𝑉 Ξ” 𝑒,𝑒𝑓𝑓 2 𝑉 = 𝑭 𝟎 1 𝑉 2 (1βˆ’ Ξ” 𝑒,𝑒𝑓𝑓 2 𝑉 2 ), for Ξ” 𝑒,𝑒𝑓𝑓 2 𝑉 2 β‰ͺ1. Effective transverse velocity 𝑣 𝑒𝑓𝑓 =0 for an ideal case. 𝑓 1 = Ξ” 𝑒,𝑒𝑓𝑓 2 𝑉 𝑓 2 =1βˆ’ Ξ” 𝑒,𝑒𝑓𝑓 2 𝑉 2 Ξ” 𝑒,𝑒𝑓𝑓 = 𝑣 𝑒,βˆ₯ = 𝑑𝑝 𝑝 ⋅𝑐 He Zhang

4 Cooling Rate Consider a proton with emittance πœ€, the dynamic invariant is 𝐼=𝛽 π‘₯ 𝛽 β€² 2 +2𝛼 π‘₯ 𝛽 π‘₯ 𝛽 β€² +𝛾 π‘₯ 𝛽 2 =2πœ€, 𝛼,𝛽,𝛾 are TWISS parameters at the cooler Consider an easy case with 𝛼=0. Assuming the friction force gives the proton a kick, Ξ”π‘₯ 𝛽 β€² , NO change on π‘₯ 𝛽 . Δ𝐼=𝛽 π‘₯ 𝛽 β€² +Ξ” π‘₯ 𝛽 β€² 2 βˆ’π›½ π‘₯ 𝛽 β€² 2 =2𝛽 π‘₯ 𝛽 β€² Ξ” π‘₯ 𝛽 β€² +𝛽 Ξ”π‘₯ 𝛽 β€² 2 Cooling effect is weak: Ξ” π‘₯ 𝛽 β€² β‰ͺ π‘₯ 𝛽 β€² Ξ”πΌβˆ Ξ”x 𝛽 β€² βˆΞ”pβˆπΉπ‘‘βˆπΉ Above is only for a single proton. Consider the proton beam: Cooling rate: 〈 Ξ”πœ€ πœ€ βŒͺ 1 𝑇 =〈 Δ𝐼 𝐼 βŒͺ 1 𝑇 ∝〈𝐹βŒͺ 1 𝑇 〈βŒͺ means average on all particles. ? He Zhang

5 Numerical Calculation (BETACOOL)
Proton beam at 100 GeV, πœ€ 𝑛 =0.4 um, dp/p = 4E-4. Gaussian bunch. Electron beam: Gaussian bunch, 𝜎 βŠ₯ =0.2 mm, 𝜎 βˆ₯ =2.1 cm, ne=1.4E10/bunch Cooler: 2 sections, 30 m, B=2T, 𝛽=10 m, 𝛼=0 IBS rate: 𝑅 βŠ₯ = , 𝑅 βˆ₯ = , 100% coupling Dispersion = 0 Longitudinal Transverse He Zhang

6 Numerical Calculation (BETACOOL)
Insufficient cooling in transverse direction, and surfeit cooling in longitudinal direction. Set dispersion function to transfer the cooling effect. Dispersion = 0.7 m Longitudinal Transverse He Zhang

7 He Zhang


Download ppt "He Zhang MEIC R&D Meeting, 07/09/2015"

Similar presentations


Ads by Google