Download presentation
Presentation is loading. Please wait.
1
He Zhang MEIC R&D Meeting, 07/09/2015
Effect of the Electron Beam Momentum Spread on Friction Force and Cooling Rate for MEIC He Zhang MEIC R&D Meeting, 07/09/2015
2
Magnetized Friction Force
Parkhomchuk formula: π=βπ½ 4 π 2 π 4 π π πΏ π π π 2 + Ξ π,πππ Ion beam π 2 = π β₯ 2 + π β₯ 2 Electron beam Ξ π,πππ 2 = π£ πππ 2 + π£ π,β₯ 2 πΏ π has a weak dependence on π£ π,β₯ , ignore it. Consider a proton beam at 100 GeV. Normalized emittance 0.3 um. Momentum spread ~ 10 β4 . Cooler length 30m. π½ β₯ =10 m, πΌ β₯ =0 at the center of the cooler. πΎ=108.4, π½= π= π½ β₯ β
π π π½πΎ =0.166 mm, π β² = π π = π π π½πΎπ =1.66Γ1 0 β5 . π β₯,πππ = π β² π½π=4990 m/s, π β₯ =πΎ π β₯,πππ =5.41Γ m/s Assuming momentum spread 5Γ 10 β4 , π β₯ = π β₯,πππ =1.5Γ m/s π 2 = π β₯ 2 + π β₯ 2 =31Γ m2/s2, π=5.6Γ m/s He Zhang
3
Magnetized Friction Force
Electron beam Ξ π,πππ 2 = π£ πππ 2 + π£ π,β₯ 2 π=βπ½ 4 π 2 π 4 π π πΏ π π 1 π Ξ π,πππ 2 π = π π 1 π 2 (1β Ξ π,πππ 2 π 2 ), for Ξ π,πππ 2 π 2 βͺ1. Effective transverse velocity π£ πππ =0 for an ideal case. π 1 = Ξ π,πππ 2 π π 2 =1β Ξ π,πππ 2 π 2 Ξ π,πππ = π£ π,β₯ = ππ π β
π He Zhang
4
Cooling Rate Consider a proton with emittance π, the dynamic invariant is πΌ=π½ π₯ π½ β² 2 +2πΌ π₯ π½ π₯ π½ β² +πΎ π₯ π½ 2 =2π, πΌ,π½,πΎ are TWISS parameters at the cooler Consider an easy case with πΌ=0. Assuming the friction force gives the proton a kick, Ξπ₯ π½ β² , NO change on π₯ π½ . ΞπΌ=π½ π₯ π½ β² +Ξ π₯ π½ β² 2 βπ½ π₯ π½ β² 2 =2π½ π₯ π½ β² Ξ π₯ π½ β² +π½ Ξπ₯ π½ β² 2 Cooling effect is weak: Ξ π₯ π½ β² βͺ π₯ π½ β² ΞπΌβ Ξx π½ β² βΞpβπΉπ‘βπΉ Above is only for a single proton. Consider the proton beam: Cooling rate: β© Ξπ π βͺ 1 π =β© ΞπΌ πΌ βͺ 1 π ββ©πΉβͺ 1 π β©βͺ means average on all particles. ? He Zhang
5
Numerical Calculation (BETACOOL)
Proton beam at 100 GeV, π π =0.4 um, dp/p = 4E-4. Gaussian bunch. Electron beam: Gaussian bunch, π β₯ =0.2 mm, π β₯ =2.1 cm, ne=1.4E10/bunch Cooler: 2 sections, 30 m, B=2T, π½=10 m, πΌ=0 IBS rate: π
β₯ = , π
β₯ = , 100% coupling Dispersion = 0 Longitudinal Transverse He Zhang
6
Numerical Calculation (BETACOOL)
Insufficient cooling in transverse direction, and surfeit cooling in longitudinal direction. Set dispersion function to transfer the cooling effect. Dispersion = 0.7 m Longitudinal Transverse He Zhang
7
He Zhang
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.