Presentation is loading. Please wait.

Presentation is loading. Please wait.

Far infrared rotational spectrum of CO J= B

Similar presentations


Presentation on theme: "Far infrared rotational spectrum of CO J= B"— Presentation transcript:

1 Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Harry Kroto 2004

2 5 10 J= 12 15 20B Harry Kroto 2004

3 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Harry Kroto 2004

4 20B 23.0 cm-1 61.5 cm-1 Line separations 2B
61.5 – 23 = cm-1 = 20B Harry Kroto 2004

5 20B 23.0 cm-1 61.5 cm-1 Line separations 2B
61.5 – 23 = cm-1 = 20B 2B = B = cm-1 Harry Kroto 2004

6 Determine the bond length of the CO
5 10 15 Homework Determine the bond length of the CO in A (Angstroms) and nm B (cm-1) = / I (UA2) I =  r  = m1m2/(m1+m2) Assume U of C =12 and O = 16 Note 1A = 0.1nm Harry Kroto 2004

7 Harry Kroto 2004

8 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

9 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

10 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

11 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

12 20B 23.0 cm-1 61.5 cm-1 Line separations 2B
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

13 Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004

14 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

15 Radiotelescope in Canada
Harry Kroto 2004

16 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

17 B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J
F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004

18 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

19 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

20 A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

21 Radiotelescope in Canada
Harry Kroto 2004

22 Black clouds and stars in space -Taurus
Harry Kroto 2004

23 Harry Kroto 2004


Download ppt "Far infrared rotational spectrum of CO J= B"

Similar presentations


Ads by Google