Presentation is loading. Please wait.

Presentation is loading. Please wait.

Robinson Instability Criteria for MEIC e Ring

Similar presentations


Presentation on theme: "Robinson Instability Criteria for MEIC e Ring"β€” Presentation transcript:

1 Robinson Instability Criteria for MEIC e Ring
Shaoheng Wang, Haipeng Wang, Robert Rimmer

2 The Definitions of Synchronous Phase
Below transition SY Lee, etc πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 Above transition Wiedemann, Robinson, etc SY Lee, etc Merminga, etc πœ“ 𝑠 πœ“ 𝑠 πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 cos πœ“ 𝑠

3 Synchronous phase is used in several physical relations
Acceleration SR equilibrium bunch length Synchrotron tune Beam loading optimization Robinson Instability 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 𝑉 π‘π‘’π‘Žπ‘˜ cos⁑( πœ“ 𝑠 )= βˆ’2πœ‹ 𝑐 2 πœ‚πΈ πœ” 2 𝜎 2 𝐻𝑒 𝛿𝐸 𝐸 2 𝜐 𝑠 = 𝐻𝑒 𝑉 π‘π‘’π‘Žπ‘˜ πœ‚cos⁑( πœ“ 𝑠 ) 2πœ‹πΈ 𝛽 π‘œπ‘π‘‘ =1+ 2𝐼 𝑅 π‘ β„Žπ‘’π‘›π‘‘ sin⁑( πœ“ 𝑠 ) 𝑉 π‘”π‘Žπ‘ tan⁑(πœ“)= βˆ’ 2𝐼 0 𝑅 𝑠 𝑉 π‘”π‘Žπ‘ (𝛽+1) co𝑠 πœ‘ 𝑠 0 <sin βˆ’2πœ“ < 2 𝑉 π‘”π‘Žπ‘ cos( πœ“ 𝑠 ) 𝑅 𝐿 𝐼 π‘Žπ‘£π‘’

4 Synchronous phase and acceleration
𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 πœ“ 𝑠 πœ“ 𝑠 Fit both cases

5 Synchronous phase and synchrotron tune
𝜐 𝑠 = 𝐻𝑒 𝑉 π‘π‘’π‘Žπ‘˜ πœ‚cos⁑( πœ“ 𝑠 ) 2πœ‹πΈ πœ“ 𝑠 πœ“ 𝑠 Fit both cases

6 Synchronous phase and SR equilibrium bunch length
𝜎= 𝑐 πœ‚ πœ” 𝑠 𝛿𝐸 𝐸 = 2πœ‹ 𝑐 πœ” 𝐸 𝐻𝑒 𝑉 π‘π‘’π‘Žπ‘˜ πœ‚ cos πœ“ 𝑠 𝛿𝐸 𝐸 πœ“ 𝑠 πœ“ 𝑠 Fit both cases

7 Synchronous phase and matching beam loading
𝛽 π‘œπ‘π‘‘ =1+ 2𝐼 𝑅 π‘ β„Žπ‘’π‘›π‘‘ sin⁑( πœ“ 𝑠 ) 𝑉 π‘”π‘Žπ‘ tan⁑( πœ“ 𝑇 )= βˆ’2𝐼 0 𝑅 𝑠 𝑉 π‘”π‘Žπ‘ (𝛽+1) co𝑠 πœ‘ 𝑠 πœ“ 𝑠

8 Synchronous phase and Robinson Instability
0 <sin βˆ’2 πœ“ 𝑇 < 2 𝑉 π‘”π‘Žπ‘ cos( πœ“ 𝑠 ) 𝑅 𝐿 𝐼 π‘Žπ‘£π‘’ πœ“ 𝑠

9 Beam Loading and Phasor Diagram
Vcavity IG VG VB YL YS YT -IB YT

10 Phasor Diagram Parameters
yT: Tuning angle of impedance yT < 0 for above transition loaded impedance: 1 𝑍 = 1 𝑅 𝐿 1+𝑖 𝑄 𝐿 πœ” 𝑅𝐹 2 βˆ’ πœ” πœ” 𝑅𝐹 πœ” 0 tan πœ“ 𝑇 =βˆ’ 𝑄 𝐿 πœ” 𝑅𝐹 2 βˆ’ πœ” πœ” 𝑅𝐹 πœ” 0 𝑉 𝐼 = 𝑅 𝐿 1βˆ’π‘–tan πœ“ 𝑇 = 𝑅 𝐿 cos πœ“ 𝑇 𝑒 π‘–πœ“ ; yS: Synchronous phase angle see definition in earlier slice; yL: Loading angle angle between the generator current and the cavity voltage ; IB: fundamental harmonic component of beam current IB = 2 I0, where I0 is the average beam current; w0: cavity resonance frequency, πœ” 0 = 1 𝐿𝐢 wRF: generator RF frequency, Synchronous beam revolution frequency times harmonic number

11 Loaded Generator-Cavity-Beam System
Both generator and beam are considered as current source, generator feed energy in to cavity; beam extracts energy from cavity. 𝑉 𝐺 = 𝑅 𝐿 𝐼 𝐺 cos πœ“ 𝑇 𝑒 𝑖 πœ“ 𝑇 RL 𝑉 𝐡 = 𝑅 𝐿 𝐼 𝐡 cos πœ“ 𝑇 𝑒 𝑖 πœ“ 𝑇 When above transition, particles with higher energy have larger revolution time. Beam current needs to lags cavity voltage to satisfy the phase stability criteria, which means the beam effective impedance is inductive. So, for the generator to see a resistive impedance, the cavity needs to be capacitive-detuned, it means yT < 0 and w0 < wRF, and voltage lags beam current by the phase |yT|, because then cavity impedance looks capacitive.

12 YS in Phasor Diagram Vcavity πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 YS -IB IB YS

13 YS in Phasor Diagram Vcavity πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠 YS -IB IB

14 YS in Phasor Diagram Vcavity πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 cos πœ“ 𝑠 -IB YS IB

15 Phasor Diagram, above transition, YT<0
Vcavity IG VG VB YL YS YT -IB YT

16 Robinson Instability Criteria --- CEA-11

17 Equations of Cavity and Beam System

18 Stable Condition

19 Further clarified in CEA-1010

20 YS in Phasor Diagram in CEA-1010
Not impedance angle =- πœ“ 𝑇 =πœ“ 𝑠 πœ“ 𝑠 𝑉 π‘Žπ‘π‘ = 𝑉 0 sin πœ“ 𝑠

21 @ 12 GeV RL 12.9 MW IB 2*0.11 A YT -32.4 degree YS 57.6 YL Vcavity 2.5
Vcavity 2.5 MV VB VG 2.93 IG 0.39 @ 12 GeV Vcavity VB IG YS YT YT -IB VG

22 Robinson work point @ 12 GeV
= 1.23e5

23 Robinson work point @ 5 GeV
= 0.01*

24 Robinson work point @ 5 GeV
= 0.002*

25 Robinson work point @ 3 GeV
Y = 268.2, tuning angle = degrees 20 cavities =

26 Robinson work point @ 3 GeV
1 cavity =

27 Robinson work point @ 3 GeV
1 cavity =

28


Download ppt "Robinson Instability Criteria for MEIC e Ring"

Similar presentations


Ads by Google