Presentation is loading. Please wait.

Presentation is loading. Please wait.

Parameters Changed in New MEIC Design

Similar presentations


Presentation on theme: "Parameters Changed in New MEIC Design"β€” Presentation transcript:

1 Parameters Changed in New MEIC Design
Old Circumference 2.5 1.416 km Rev Frequency 0.120 0.212 MHz Harmonic Number 6251 3535 Dipole Bending Radius (e) 110 57.94 m Dipole Bending Radius (p) 130 Dipole Bend Angle (e) 2.8125 1.98 degree Dipole Bend Angle (p) 2.64 Crossing Angle 90 60 Angle Factor 1.500 1.333 Arc Length 879.38 445.34 Momentum Compaction (e) 2.366E-04 7.60E-04 Momentum Compaction (p) 3.1E-03 5.76E-03 Total SR Power Limit (e) 10 5 MW

2 At High Energy End, e Current is limited by SR Power, Total or Linear
NEW OLD Linear Total: 10 MW Linear Total: 5 MW GeV GeV 𝑃 π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ = 𝐢 𝑆𝑅 𝐸 4 𝐼 2πœ‹ 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ 2 𝑃 π‘‘π‘œπ‘‘π‘Žπ‘™ = 𝐹 πœ‘ 𝐢 𝑆𝑅 𝐸 4 𝐼 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’

3 e Current at Low Energy End
OLD NEW

4 Cavity Number We want less cavities for impedance and cost budget reason; We need enough cavities to average out the maximum gradient and coupler feed forward power; OLD NEW 500 kW / cavity 12.5 MV / m

5 Longitudinal Impedance Threshold at 5 GeV
𝑍 || π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž = 2𝐸 𝜐 𝑠 𝑁 π‘π‘Žπ‘£ 𝑓 HOM 𝐼 𝑏 𝛼 𝜏 𝑠 𝑍 || π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž = 2 𝑓 𝑅𝐸𝑉 𝜐 𝑠 𝐹 πœ‘ 𝐢 𝑆𝑅 𝐸 4 𝑁 π‘π‘Žπ‘£ 𝑓 HOM 𝐼 𝑏 𝛼 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ 𝜏 𝑠 β‰ˆ 𝐸 Δ𝐸 𝑓 rev 𝑍 || π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž ∝ 𝜐 𝑠 𝐹 πœ‘ 𝑓 rev 𝑁 π‘π‘Žπ‘£ 𝛼 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ =𝐾 βˆ†πΈ π‘™π‘œπ‘ π‘  π‘π‘’π‘Ÿ π‘‘π‘’π‘Ÿπ‘› = 𝐹 πœ‘ 𝐢 𝑆𝑅 𝐸 4 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ Parameters New Old Syn Tune 0.007 0.013 Angle Factor 1.5 1.333 Rev Freq (MHz) 0.12 0.212 N cavity 5 8 Momentum Comp 2.366e-4 7.5e-4 Dipole Bending R (m) 110 57.94 K 0.968e4 1.057e-4

6 Impedance Threshold for Single Cavity at 3 A, 5 GeV,
21 Cavities in Total

7 Transverse Impedance Threshold
𝑍 π‘₯, 𝑦 π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž = 2𝐸 𝑁 π‘π‘Žπ‘£ 𝑓 rev 𝐼 𝑏 𝛽 π‘₯,𝑦 𝜏 π‘₯,𝑦 𝜏 𝑠 β‰ˆ 𝐸 Δ𝐸 𝑓 rev 𝑍 π‘₯, 𝑦 π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž = 𝐹 πœ‘ 𝐢 𝑆𝑅 𝐸 4 𝑁 π‘π‘Žπ‘£ 𝐼 𝑏 𝛽 π‘₯,𝑦 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ βˆ†πΈ π‘™π‘œπ‘ π‘  π‘π‘’π‘Ÿ π‘‘π‘’π‘Ÿπ‘› = 𝐹 πœ‘ 𝐢 𝑆𝑅 𝐸 4 𝑅 π‘‘π‘–π‘π‘œπ‘™π‘’ NEW OLD

8 Stage Operation of e Ring
12 GeV operation requires 21 RF cavities for SR energy compensation. Lower energy operations need less cavities. If all 21 cavities are installed, the total cavities impedance will be unnecessarily high for low energy operation, which will significantly lower the maximum allowable e current. Or, if we can move unneeded cavities out of beam line to lower the total cavity impedance, we can run with higher e current at low energy. But, is this measure practical in operation? 𝑍 || π‘‘β„Žπ‘Ÿπ‘’π‘ β„Ž = 2𝐸 𝜐 𝑠 𝑁 π‘π‘Žπ‘£ 𝑓 HOM 𝐼 𝑏 𝛼 𝜏 𝑠

9 With 21 cavities for All Energies  235 mA @ 3 GeV
Impedance with 5 GeV is used as the reference, e current needs to be decreased for energy lower than 5 GeV.

10 Use Less Cavities for Lower Energies  1.17 A @ 3 GeV
Current Total Impedance RF Input power Cavity Number

11 RF Gradient at 12 GeV NEW OLD 21 Cavities, 6.9 MV/m3
Coupler power limited 20 Cavities, 12.5 MV/m Gradient limited

12 RF Cavity Parameters in e Ring
Energy 3 5 12 GeV gamma 5871.8 9785.7 Current 0.24 3.00 0.41 A Energy Spread 3.40E-04 5.60E-04 1.35E-03 Phase Slip Factor 2.4E-04 SR power per ring 0.02 2.26 10.37 MW Energy Loss per Turn 0.10 0.75 25.05 MeV SR power per unit length 0.022 2.184 10.000 kW/m Veff MV Vpeak 0.25 1.30 29.06 Syn. Phase 22.80 35.65 59.51 degree Vgap 0.26 1.38 Gradient 1.263 1.295 6.920 MV/m Syn. Tune 0.004 0.007 0.017 Beam Power per Cavity 23.1 452.9 493.7 kW Forward Power 25.98 465.52 498.92 Cavity Power Loss 2.35E-05 2.48E-05 7.07E-04 Reflected Power 2.9 12.6 5.2 Coupling Beta 1.96E+06 2.29E+07 8.12E+05 Ξ΄f -67.7 -593.0 -8.9 kHz Qext 6.57E+03 5.64E+02 1.59E+04 Qloaded Long. SR Damping Time 256.09 55.31 4.00 mS Tran. SR Damping Time 512.17 110.63 8.00 Active Cavity Number 1 21 Circumference m Rev Frequency 0.120 MHz RF frequency Harmonic Number 6251 Radius of Dipole Dipole Bend Angle 2.813 degree Crossing Angle 90.000 Angle Factor 1.500 Arc Length Beta Function at RF Cav 4.000 Momentum Compaction 2.366E-04 Bunch Length 7.5 mm Linear SR Power Limit 10 kW/m Total SR Power Limit MW CavityActiveLength 0.2 Cavity Insertion Length 1.91 temperature 2.1 K BCS Resistance 7.918 nΞ© Residual Resistance 13 Surface Resistance 20.9 Geometric Factor 270 R/Q 105 Qzero 1.29E+10 Shunt Impedance 1.36E+06 MΞ©

13 Robinson Stable Region
Strong beam loading requires direct RF cavity feedback to increase the stable operation margin.

14 Ion Collider Ring Bunching Cavities
Particle Proton Lead ion Energy 78 35 GeV/u gamma 84.1 38.7 Current 0.50 A Energy Spread 3.00E-04 Phase Slip Factor 3.0E-03 2.4E-03 Vpeak 33.15 31.03 MV Syn. Phase 0.00 degree Vgap 1.95 1.83 Gradient 9.750 9.125 MV/m Syn. Tune 0.035 0.029 Forward Power 182.24 346.71 kW Cavity Power Loss 1.40E-03 1.23E-03 Reflected Power 182.2 346.7 Coupling Beta 5.00E+05 Ξ΄f -17.3 -5.3 kHz Qext 2.58E+04 Qloaded Active Cavity Number 17 Circumference m Rev Frequency 0.120 MHz RF frequency Harmonic Number 6251 Radius of Dipole Dipole Bend Angle 2.640 degree Crossing Angle 90.000 Angle Factor 1.500 Arc Length Momentum Compaction 3.100E-03 Bunch Length 10 mm CavityActiveLength 0.2 Cavity Insertion Length 1.91 temperature 2.1 K BCS Resistance 7.918 nΞ© Residual Resistance 13 Surface Resistance 20.9 Geometric Factor 270 R/Q 105 Qzero 1.29E+10 Shunt Impedance 1.36E+06 MΞ©

15 Robinson Stability Ibeam Ibeam Itotal Itotal Igenerator Igenerator

16 Longitudinal Impedance Threshold for 78 GeV Proton

17 Low Frequency RF Systems, 15.5 ~ 78 GeV, H = 8
RF cavity type Ferrite loaded RF cavity Harmonic number 8 Cavity Number 2 Gap number per cavity 2 Cavity length (m) 2.2 Ferrite toroid inner radius (m) 0.25 Ferrite toroid outer radius (m) 0.5 Ferrite stack length (m) 1.0 Maximum Vgap (kV) 10.0 Ion species protons (H+) Energy (GeV/u) ~78 Frequency Range (MHz) ~0.958 Ramping Time (sec) 10 Vgap (kV) 5.2 Beam Absorbed Power (kW) 26.1 Total Power Lossave (kW) 118

18 THE END

19 Example of Space for RF Cavities
x= x=3m F. Lin


Download ppt "Parameters Changed in New MEIC Design"

Similar presentations


Ads by Google