Presentation is loading. Please wait.

Presentation is loading. Please wait.

Microwave and Millimeter-wave Technology(MMT) Lab

Similar presentations


Presentation on theme: "Microwave and Millimeter-wave Technology(MMT) Lab"— Presentation transcript:

1 Microwave and Millimeter-wave Technology(MMT) Lab
微波毫米波集成电路与系统实验室 Microwave and Millimeter-wave Technology(MMT) Lab Quasi-Physical Zone Division (QPZD) Model for Wide-bandgap Semiconductor Technology Yuehang Xu

2 Outline Background Theory of QPZD model QPZD Diamond FET model Summary

3 Trends of RF transistors
Ⅰ. Background Trends of RF transistors Performance (Power、noise) Si, Ge, etc. GaAs,InP, etc. GaN, Diamond, etc. Integration (node) ~um ~nm < 1nm

4 Ⅰ. Background Material process model design system

5 Ⅰ. Background Compact model coalition(CMC) UESTC model since 2005
1.SiC MESFET 2.GaAs HEMT 3.GaN HEMT 4.InP HBT 5.Graphene FET 6.CMOS 7.Diamond FET Empirical model (Angelov) Physical compact model

6 Physical compact models
Ⅰ. Background Physical compact models Pao-Sah I-V Current equation IEEE Trans. Electron Devices, 52(8), , 2005. Surface potential model (i.e. ASM-HEMT) Charge based model ( i.e. MVSG) Advantages More intuitive in physics; Less fitting parameters; Naturally scalable; Problems Increasing fitting parameters when considering self-heating, ambient temperature, and trapping effects; Easily not convergence in microwave high power amplifiers (HPAs) ; Is there any model with less fitting parameters, high convergence for microwave application?

7 Outline Background Theory of QPZD model QPZD Diamond FET model Summary

8 Theory of QPZD model Zone Division Triode operation
Saturation operation Intrinsic FET Zone(IFZ) Space-charge Limited Zone(SLZ) Charge Deficit Zone(CDZ)

9 Theory of QPZD model Drain current model
D. Hou, G. L. Bilbro, and R. J. Trew, IEEE TED , 2013. Zhang wen, Yuehang Xu* , et al.,IEEE T-MTT, 2017,65(12):

10 Theory of QPZD model Capacitance models
Gate channel capacitance Cgc in ON state Inner fringing capacitance Cif in OFF state Bias-dependent The depletion regions Yonghao Jia , Yuehang Xu*, etc. IEEE T-ED, 2019,66(1):

11 Analytical capacitance equations
Theory of QPZD model Analytical capacitance equations Ward–Dutton charge partition (IEEE JSSCC,1980)

12 Includes self-heating, ambient temperature, trapping effects
Theory of QPZD model Includes self-heating, ambient temperature, trapping effects

13 Does it work for GaN HEMTs and MMICs?
Theory of QPZD model Does it work for GaN HEMTs and MMICs? (a)2×125μm (b)6×100μm (c)8×125μm 0.25um GaN HEMT, 4*125um, Vgs=-3V, Vds=25V

14 Does it work for GaN HEMTs and MMICs?
Theory of QPZD model Does it work for GaN HEMTs and MMICs? X-band MMIC

15 Is it physical enough for statistical model ?
Theory of QPZD model Is it physical enough for statistical model ? DC-IV Measurement for batches of devices Statistical property of physical parameters: d, vmax, nsmax, µsat Statistical Model Automatic Parameter Extraction d vmax nsmax, α1, α2, α3, βn a0, a1, b0, b1, b2 ns Parameter Data Set Factor Analysis Statistical Model Zhang Wen , Shuman Mao, Yuehang Xu*, etc. IEEE IMS, 2019

16 Theory of QPZD model Factor Analysis (FA)
Standardization Correlation Coefficient Common Factor Load Matrix Factor Calculation

17 Theory of QPZD model vmax d µsat nsmax

18 Statistical Property of the Physical Parameters
Theory of QPZD model Statistical Property of the Physical Parameters Simulation Measured

19 Power Sweep Characteristics
Theory of QPZD model Power Sweep Characteristics

20 Sensitive Analysis in Power Sweep
Theory of QPZD model Sensitive Analysis in Power Sweep vmax ns

21 Sensitive Analysis in Impedance Chart
Theory of QPZD model Sensitive Analysis in Impedance Chart

22 Outline Background Theory of QPZD model QPZD Diamond FET model Summary

23 Diamond FET model Michale W. Geis, Phys. Status Solidi A. 2018

24 Lower Energy Consumption
Diamond FET model Power Electronics Application RF Electronics Application High-Temperature High-Power High-Frequency Application Lower Energy Consumption Higher Output Power

25 Diamond FET model World-scale Diamond Device Research Distribution
Univ of Bristol : Martin Kuball Univ of Glasgow: David Moran Univ of Ulm: E.Kohn Institute Neel:Pham Univ of Rome Tor Vergata: Pasciuto Waseda University Hiroshi Kawarada Saga University Makoto Kasu World-scale Diamond Device Research Distribution

26 Diamond FET model Developments of TCAD Simulation Models for C-H Diamond FETs 2001 0.2 nm p-type doping in diamond surface H atoms of the C-H bonds act as surface acceptors 2017 Negative fixed charge sheet induces a 2DHG channel transfer doping mechanism due to C-H dipoles and surface adsorbates is not clear 2017 Negative charge sheet (source to drain) induces a 2DHG channel, and positive charge sheet (under gate) calibrates the model Not explain the physical meaning of the positive charge sheet and the role of surface adsorbate layer in the transfer doping

27 Diamond FET model C-H Diamond FET Operation Mechanism and TCAD Model
C-H dipole effect induced transfer doping mechanism I-V characteristics Transfer characteristics Drift-Diffusion transport equation Wachutka’s thermodynamically rigorous model Shockley-Read-Hall (SRH) Recombination Model Yu Fu, Ruimin Xu, …, Yuehang Xu* IEEE EDL, 2018

28 Diamond FET model Zone division for diamond FET TCAD simulation

29 Linear-mode I-V Model Parameter Extraction and Modeling
Diamond FET model Linear-mode I-V Model Parameter Extraction and Modeling Basic assumption

30 Diamond FET model COMSOL VS 38.73 C/W 33.81 C/W C-H Diamond FET

31 I-V Model Verification
Diamond FET model I-V Model Verification Saturated-mode I-V model LG = 0.5 m, WG = 2* 500 m Modeling Flowchart

32 Small signal S-Parameter Extraction and Verification
Diamond FET model Small signal S-Parameter Extraction and Verification

33 Diamond FET model Large-signal Modeling and Verification
1 GHz Power Sweep Electrothermal large signal model topology Yu Fu, Ruimin Xu, …, Yuehang Xu*, IEEE Access, 2019 2 GHz Power Sweep

34 Outline Background Theory of QPZD model QPZD Diamond FET model Summary

35 Summary QPZD model is validated by GaN HEMT transistors and further validated by a X-band GaN High power amplifier QPZD statistical model is used for MMIC yield analysis QPZD model is used for microwave diamond FETs

36 Acknowledgement

37


Download ppt "Microwave and Millimeter-wave Technology(MMT) Lab"

Similar presentations


Ads by Google