Presentation is loading. Please wait.

Presentation is loading. Please wait.

Development of a Toolbox for High Purity Germanium Detector Internal Fields Calculation 16 May 2017 1.

Similar presentations


Presentation on theme: "Development of a Toolbox for High Purity Germanium Detector Internal Fields Calculation 16 May 2017 1."โ€” Presentation transcript:

1 Development of a Toolbox for High Purity Germanium Detector Internal Fields Calculation
16 May 2017 1

2 Motivation It is desirable to fabricate High Purity Germanium (HP-Ge) detectors to operate with internal electric fields exceeding 20 V/mm. This leads to saturation velocity of charge carriers in the detector and minimizes the charge collection time per gamma event. In order to minimize leakage current and minimize the capacitance of the electrode, operation of the detector occurs at an applied reverse bias that is just beyond total depletion. Electric field modeling allows for an understanding of the effects of physical dimensions of detector and impurity doping profile. This offers an opportunity for optimization of these parameters. A specific design for the physical dimensions of a detector can be determined for a given Ge crystal. CoSSURF-LB workshop

3 Detector Technology Team
High purity germanium crystal growth HPGe detector manufacturing Special detector system assembly Technology advancement - detector development CoSSURF-LB workshop

4 HP Germanium detector production
Fabrication Process HPGe detector Status: Load Load detector element into the selected cryostat configuration Crystal Growth Grow HPGe detector element Shaping Shape detector element GE TEST Test detector Initial and Performance testing PUMP Pump/Bake GE TEST Cycle for stability Pass/Fail? P Pass/Fail? F P LB? Y N F Do LB Evaluation LB Evaluation Y Pump / Bake? N Disposition: Complete for Shipment Cycle time is measured in days CoSSURF-LB workshop

5 Poisson Equation Approximation
- Poissonโ€™s Equation โˆ‡ 2 ๐‘‰=โˆ’ ๐œŒ ๐œ– Laplace Operator in Cylindrical Coordinates ๐œ• 2 ๐‘‰ ๐œ•๐‘ง ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ ๐‘Ÿ ๐œ•๐‘‰ ๐œ•๐‘Ÿ + 1 ๐‘Ÿ 2 ๐œ• 2 ๐‘‰ ๐œ•๐œƒ 2 =โˆ’ ๐œŒ ๐œ– - Rotational Symmetry ๐œ• 2 ๐‘‰ ๐œ•๐‘ง ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ ๐‘Ÿ ๐œ•๐‘‰ ๐œ•๐‘Ÿ =โˆ’ ๐œŒ ๐œ– - Finite Difference Approximations ๐‘‰ ๐‘–,๐‘—+1 โˆ’ 2๐‘‰ ๐‘–,๐‘— + ๐‘‰ ๐‘–,๐‘—โˆ’1 ฮ”๐‘ง ๐‘‰ ๐‘–+1,๐‘— โˆ’ 2๐‘‰ ๐‘–,๐‘— + ๐‘‰ ๐‘–โˆ’1,๐‘— ฮ”๐‘Ÿ ๐‘Ÿ ๐‘– ๐‘‰ ๐‘–+1,๐‘— โˆ’ ๐‘‰ ๐‘–โˆ’1,๐‘— 2ฮ”๐‘Ÿ =โˆ’ ๐œŒ ๐‘–,๐‘— ๐œ– ๐‘–,๐‘—

6 Poisson Equation Approximation
- Linear System of Equations ๐ท ๐‘ˆ โ‹ฏ ๐ฟ ๐ท โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฑ ๐‘‰ 1,1 ๐‘‰ 1,2 โ‹ฎ = โˆ’ ๐œŒ 1,1 ๐œ– 1,1 โˆ’ ๐œŒ 1,1 ๐œ– 1,1 โ‹ฎ ๐ด ๐‘‰=๐‘ - Decomposition of Matrix ๐ด ๐‘‰= ๐ท+๐‘ˆ+๐ฟ ๐‘‰=๐‘ ๐ท+๐ฟ ๐‘‰ ๐‘›+1 =๐‘โˆ’ ๐‘ˆ ๐‘‰ ๐‘› - Iterative solution by point by point evaluation through the vector (V), proceed until the change from one iteration to the next is smaller than a predetermined increment (<1ฮผV)

7 Boundary Conditions Boundary values have three possibilities:
Applied Reverse Bias (V=VApplied) Ground (V=0) Passivated/Insulated surface Electric Field in normal direction is zero

8 Converged Solution (Full Depletion)

9 Convergence Acceleration
- Successive Overrelaxation Technique ๐œ” ๐ท+๐ฟ ๐‘‰ ๐‘›+1 =๐œ” ๐‘โˆ’ ๐‘ˆ ๐‘‰ ๐‘› ๐ท+๐œ”๐ฟ ๐‘‰ ๐‘›+1 =๐œ”๐‘โˆ’ ๐œ”๐‘ˆ+ ๐œ”โˆ’1 ๐ท ๐‘‰ ๐‘› - Adjustment of relaxation factor (ฯ‰) gives significantly faster convergence rate. Relaxation factor must be greater than zero and less than two for convergence.

10 Partial Depletion

11 Impurity Gradient

12 Pinch-Off

13 Inverted Coax Hole

14 Future Uses Estimation of impurity profile in the detector
Prediction of full depletion voltage Custom physical dimension design for a given Ge crystal Pulse shape determination Segmented detectors


Download ppt "Development of a Toolbox for High Purity Germanium Detector Internal Fields Calculation 16 May 2017 1."

Similar presentations


Ads by Google