Presentation is loading. Please wait.

Presentation is loading. Please wait.

JLEIC High-Energy Ion IR Design: Options and Performance

Similar presentations


Presentation on theme: "JLEIC High-Energy Ion IR Design: Options and Performance"β€” Presentation transcript:

1 JLEIC High-Energy Ion IR Design: Options and Performance
Vasiliy Morozov JLEIC Accelerator R&D Meeting January 10, 2019

2 100 GeV/c Ion IR Optics Pole-tip fields are limited to 6 T
FFB Far-forward detection Geometric match and dispersion suppression ions 𝜎 π‘₯/𝑦 =21.7/4.3 πœ‡m 𝜎 π‘₯ β€² / 𝑦 β€² =0.22 mrad 𝛽 π‘₯/𝑦 =10/2 cm IP Secondary focus iBDS2 iBDS3 iBDS1 Ξ” π‘₯ π‘“π‘Ÿ = 𝐷 π‘₯ Ξ”(𝐡𝜌)/(𝐡𝜌) 𝜎 π‘₯ β€² / 𝑦 β€² =16/50 πœ‡rad 𝜎 π‘₯/𝑦 =292/19 πœ‡m 𝛽 π‘₯/𝑦 =69/37 cm 𝐷 π‘₯ =βˆ’0.95 m January 10, 2019 JLEIC Accelerator R&D Meeting

3 Modifying IR Design for 200 GeV/c
Constraints Maximum pole-tip fields at 200 GeV/c of 6 T οƒž 4.6 T Minimum impact on the forward hadron tagging performance compared to the 100 GeV/c design Minimum impact on the luminosity performance compared to the 100 GeV/c design Minimum impact on the beam dynamics compared to the 100 GeV/c design Options explored Reduced FF Quad Apertures Doubled Detector Space and Halved Crossing Angle Doubled Quad Lengths 1.5x Quad Lengths and 2/3 Crossing Angle οƒΌ January 10, 2019 JLEIC Accelerator R&D Meeting

4 Doubled Quad Lengths: pCDR Appendix Version (IR v1)
Keep maximum 𝛽-functions at ~2500 m οƒž same maximum beam size Quad apertures ο‚Ί 6 T / πœ• 𝐡 𝑦 πœ•π‘₯ at 200 GeV/c = 85 / 152 / 196 mm (radius) πœƒβ‰‘ Quad aperture / distance from IP to quad’s far end = 9.1 / 10.0 / 10.5 mrad 𝛽 π‘₯,𝑦 βˆ— = 18 / 2.15 cm οƒž 𝐿 𝐿 0 =0.72, 𝐷 π‘₯ at roman pot = 0.97 m January 10, 2019 JLEIC Accelerator R&D Meeting

5 Performance Optimization at Lower Energies (IR v1)
Cut first FFQ in half and use the halves as the first and second FFQs at lower energies Can run in this mode up to 65 GeV/c proton momentum 𝛽 π‘₯,𝑦 βˆ— = 7.5 / 2 cm οƒž luminosity improvement by a factor of 𝐿 𝐿 0 = 1.15 (up to 𝑝 𝑝 = 65 GeV/c) January 10, 2019 JLEIC Accelerator R&D Meeting

6 200 GeV/c IR Design with 4.6 T Pole-Tip Fields (IR v2)
𝛽 π‘₯,𝑦 βˆ— π‘œπ‘™π‘‘ = cm οƒž 𝛽 π‘₯,𝑦 βˆ— 𝑛𝑒𝑀 = πŸ” 𝟏.𝟐 cm 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ π‘œπ‘™π‘‘ =2.5 km οƒž 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ 𝑛𝑒𝑀 = 𝛽 π‘₯,𝑦 βˆ— π‘œπ‘™π‘‘ 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ π‘œπ‘™π‘‘ 𝛽 π‘₯,𝑦 βˆ— 𝑛𝑒𝑀 =πŸ’.𝟐 km Constraints 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ ≀4200 m οƒž 𝛽 π‘₯,𝑦 βˆ— =19/1.6 cm οƒž 𝐿 𝐿 0 =0.48 Secondary focus in both planes Quadrupole aperture: πœƒβ‰₯10 mrad Quadrupole length ratios: 1:2:1 Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’ ≀4.6 T Serious problem: forward detection region extends beyond figure-8 crossing point Figure-8 crossing point Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a/b 2.11 4.6 βˆ’33.5 13.7 11.7 iQDS2 8.44 17.1 26.9 12.7 iQDS3 4.22 βˆ’16.3 28.2 10.7 January 10, 2019 JLEIC Accelerator R&D Meeting

7 200 GeV/c Downstream IR Design with 4.6 T Pole-Tip Fields (IR v3)
Quadrupole doublet instead of a triplet Constraints 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ ≀4200 m οƒž 𝛽 π‘₯,𝑦 βˆ— =19.6/1.6 cm οƒž 𝐿 𝐿 0 =0.48 Secondary focus in both planes Quadrupole aperture: πœƒβ‰₯10 mrad Equal quadrupole lengths Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a/b 2.23 4.6 βˆ’37.5 12.3 10.3 iQDS2 4.45 26.4 17.5 10.0 January 10, 2019 JLEIC Accelerator R&D Meeting

8 200 GeV/c Upstream IR Design with 4.6 T Pole-Tip Fields (IR v3)
Doublet instead of a triplet Constraints 𝛽 π‘₯,𝑦 βˆ— =19.6/1.6 cm Quadrupole aperture: 4 cm radius Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) iQUS1 2.86 4.6 βˆ’115 4 iQUS2 2.04 115 January 10, 2019 JLEIC Accelerator R&D Meeting

9 Complete 200 GeV/c IR Design (IR v3)
January 10, 2019 JLEIC Accelerator R&D Meeting

10 Optimization for Operation at up to 100 GeV (IR v4)
𝛽 π‘₯ π‘šπ‘Žπ‘₯ is limited by the DA, 𝛽 𝑦 π‘šπ‘Žπ‘₯ is limited by HG effect Constraints 𝛽 π‘₯,𝑦 π‘šπ‘Žπ‘₯ ≀4200 m οƒž 𝛽 π‘₯,𝑦 βˆ— =8.0/1.3 cm οƒž 𝑳 𝑳 𝟎 =𝟎.πŸ–πŸ‘ up to 100 GeV Secondary focus in both planes Quadrupole aperture: πœƒβ‰₯10 mrad Varied lengths of the first two quads Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T at 100 GeV/c 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T at 200 GeV/c Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a 2.21 4.6 βˆ’49.7 9.3 10.1 iQDS1b 2.27 38.4 12.0 10.0 January 10, 2019 JLEIC Accelerator R&D Meeting

11 Optimization for Operation at up to 100 GeV (IR v5)
Adjusting quad length/aperture does not help to increase 𝐿, reached thin-lens limit, must adjust 𝛽 βˆ— Approximation used to obtain 𝛽 π‘₯ π‘šπ‘Žπ‘₯ = 𝛽 𝑦 π‘šπ‘Žπ‘₯ of 4.2 km is not very accurate because triplet is not a thin lens. Constraints 𝑳 𝑳 𝟎 =𝟏.𝟎 up to 100 GeV οƒž 𝜷 𝒙 π’Žπ’‚π’™ = 𝜷 π’š π’Žπ’‚π’™ β‰€πŸ“πŸŽπŸ–πŸ“ m οƒž 𝛽 π‘₯,𝑦 βˆ— =6.6/1.1 cm (ratio is fixed for a doublet) Secondary focus in both planes 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T at 100 GeV/c 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T at 200 GeV/c Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a 2.21 4.6 βˆ’49.7 9.3 10.1 iQDS1b 2.27 38.4 12.0 10.0 January 10, 2019 JLEIC Accelerator R&D Meeting

12 200 GeV/c IR Design with 4.6 T Pole-Tip Fields (IR v6)
Constraints 𝜷 𝒙,π’š π’Žπ’‚π’™ β‰€πŸ’.𝟐 km οƒž 𝛽 π‘₯,𝑦 βˆ— =15.2/1.5 cm οƒž 𝑳 𝑳 𝟎 =𝟎.πŸ“πŸ• Secondary focus in both planes Quadrupole aperture: 𝜽β‰₯πŸ– mrad Equal quadrupole lengths Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a/b 1.74 4.6 βˆ’51.4 9.0 8.2 iQDS2 3.49 37.1 12.4 8.0 January 10, 2019 JLEIC Accelerator R&D Meeting

13 200 GeV/c IR Design with 4.6 T Pole-Tip Fields (IR v7)
Constraints 𝜷 𝒙,π’š π’Žπ’‚π’™ β‰€πŸ“ km οƒž 𝛽 π‘₯,𝑦 βˆ— =12.8/1.2 cm οƒž 𝑳 𝑳 𝟎 =𝟎.πŸ”πŸ• Secondary focus in both planes Quadrupole aperture: 𝜽β‰₯πŸ– mrad Equal quadrupole lengths Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a/b 1.74 4.6 βˆ’51.4 9.0 8.2 iQDS2 3.49 37.1 12.4 8.0 January 10, 2019 JLEIC Accelerator R&D Meeting

14 200 GeV/c IR Design with 4.6 T Pole-Tip Fields (IR v8)
To take advantage of the smaller 𝑦 emittance must flip polarities of the quads in the doublet, otherwise run into HG problem. Crab voltage 𝑉 π‘π‘Ÿπ‘Žπ‘ ∝ 1 𝛽 π‘₯ π‘π‘Ÿπ‘Žπ‘ 𝛽 π‘₯ βˆ— Constraints 𝜷 𝒙 π’Žπ’‚π’™ β‰€πŸ“ km, 𝜷 π’š π’Žπ’‚π’™ β‰€πŸπŸŽ km, οƒž 𝛽 π‘₯,𝑦 βˆ— =1.3/8.2 cm οƒž 𝑳 𝑳 𝟎 =𝟎.πŸ–πŸ Secondary focus in both planes Quadrupole aperture: 𝜽β‰₯𝟏𝟎 mrad Equal quadrupole lengths Quadrupole length adjustment: 𝐡 π‘π‘œπ‘™π‘’βˆ’π‘‘π‘–π‘ ≀4.6 T 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’2 ≀4.6 T, 𝐡 π‘‘π‘–π‘π‘œπ‘™π‘’3 ≀6 T Quad L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) iQDS1a/b 2.21 4.6 37.8 12.2 10.2 iQDS2 4.43 βˆ’26.5 17.4 10.0 January 10, 2019 JLEIC Accelerator R&D Meeting

15 JLEIC Accelerator R&D Meeting
Summary Version # of quads L (m) 𝑩 π’‘βˆ’π’• (T) 𝝏 𝑩 π’š /𝝏𝒙 (T/m) 𝑹 (cm) 𝜽 (mrad) 𝜷 𝒙,π’š π’Žπ’‚π’™ (m) 𝑳/ 𝑳 𝟎 1 3 2.4/4.8/2.4 6 βˆ’ /βˆ’30.7 8.5/13.8/16.9 9.1 2,500 1.15 / 0.72 (65/200 GeV) 2 4.22/8.44/4.22 4.6 βˆ’ /βˆ’16.3 13.7/26.9/28.2 10.7 4,200 0.48 (200 GeV) 4.45/4.45 βˆ’37.5/26.4 12.3/17.5 10.0 4 (2.21,2.27)/4.45 βˆ’49.7/38.4 9.3/12.0 0.83 (100 GeV) 5 5,100 1.0/0.58 (100/200 GeV) 3.49/3.49 βˆ’51.4/37.1 9.0/12.4 8.0 0.57 (200 GeV) 7 5,000 0.67 (200 GeV) 8 4.43/4.43 37.8/βˆ’26.5 12.2/17.4 5,000/10,000 0.81 (200 GeV) January 10, 2019 JLEIC Accelerator R&D Meeting


Download ppt "JLEIC High-Energy Ion IR Design: Options and Performance"

Similar presentations


Ads by Google