Download presentation
Presentation is loading. Please wait.
1
Generic Set Algorithms
Andy Wang Data Structures, Algorithms, and Generic Programming
2
Generic Set Algorithms
Very useful software tools A part of the STL specification Implement set theory Union Intersection Difference Containment Merge Runtime complexity in O(size)
3
Set Algorithms—Assumptions and Outcomes
Input ranges determined by input iterators Output start determined by output iterator Input ranges are sorted Outcomes Output range is sorted Output range is the set operation applied to the input ranges
4
Set Algorithm Complexity
Unsorted input ranges O(size2) to iterate through range for each element {g, c, m, y, x, h, a} union {h, w, a, b} Sorted input rages O(size) to iterate through each range once {a, c, g, h, m, x, y} union {a, b, h, w}
5
Sorted Range Control Structure
Compare current elements from each input range Perform action based on comparison Increment past elements used for action Continue until an input range is exhausted Deal with tail of remaining range
6
Set Union template <class I1, class I2, class I3>
void g_set_union(I1 B1, I1 E1, I2 B2, I2 E2, I3 D) { for (; B1 != E1 && B2 != E2; ++D) { if (*B1 < *B2) { *D = *B1; ++B1; } else if (*B2 < *B1) { *D = *B2; ++B2; } else { // disallow duplicates ++B1, ++B2; } while (B1 != E1) { *D++ = *B1++; } while (B2 != E2) { *D++ = *B2++; }
7
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {} B1 E1 B2 E2 D
8
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a} B1 E1 B2 E2 D
9
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a} B1 E1 B2 E2 D
10
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b} B1 E1 B2 E2 D
11
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b} B1 E1 B2 E2 D
12
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c} B1 E1 B2 E2 D
13
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c} B1 E1 B2 E2 D
14
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d} B1 E1 B2 E2 D
15
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d} B1 E1 B2, E2 D
16
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d, g} B1 E1 B2, E2 D
17
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d, g} B1 E1 B2, E2 D
18
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d, g, m} B1 E1 B2, E2 D
19
Set Union Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Union Set: {a, b, c, d, g, m} B1, E1 B2, E2 D
20
Set Merge template <class I1, class I2, class I3>
void g_set_merge(I1 B1, I1 E1, I2 B2, I2 E2, I3 D) { while (B1 != E1 && B2 != E2) { if (*B2 < *B1) { *D++ = *B2++; } else { // allow duplicates *D++ = *B1++; } while (B1 != E1) { *D++ = *B1++; } while (B2 != E2) { *D++ = *B2++; }
21
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {} B1 E1 B2 E2 D
22
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a} B1 E1 B2 E2 D
23
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a} B1 E1 B2 E2 D
24
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a} B1 E1 B2 E2 D
25
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a} B1 E1 B2 E2 D
26
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b} B1 E1 B2 E2 D
27
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b} B1 E1 B2 E2 D
28
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c} B1 E1 B2 E2 D
29
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c} B1 E1 B2 E2 D
30
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d} B1 E1 B2 E2 D
31
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d} B1 E1 B2, E2 D
32
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d, g} B1 E1 B2, E2 D
33
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d, g} B1 E1 B2, E2 D
34
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d, g, m} B1 E1 B2, E2 D
35
Set Merge Illustrated Set 1: {a, c, g, m} Set 2: {a, b, d}
Merged Set: {a, a, b, c, d, g, m} B1, E1 B2, E2 D
36
Set Intersection template <class I1, class I2, class I3>
void g_set_intersection(I1 B1, I1 E1, I2 B2, I2 E2, I3 D) { while (B1 != E1 && B2 != E2) { if (*B2 < *B1) { // *B2 not in set 1 ++B2; } else if (*B1 < *B2) { // *B1 not in set 2 ++B1; } else { *D++ = *B1++; }
37
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {} B1 E1 B2 E2 D
38
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2 E2 D
39
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2 E2 D
40
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2 E2 D
41
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2 E2 D
42
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2, E2 D
43
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1 E1 B2, E2 D
44
Set Intersection Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Intersection Set: {a} B1, E1 B2, E2 D
45
Set Difference template <class I1, class I2, class I3>
void g_set_difference(I1 B1, I1 E1, I2 B2, I2 E2, I3 D) { while (B1 != E1 && B2 != E2) { if (*B2 < *B1) { // *B2 not in set 1 ++B2; } else if (*B1 < *B2) { // *B1 not in set 2 *D++ = *B1++; } else { ++B1; } while (B1 != E1) { *D++ = *B1++; }
46
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {} B1 E1 B2 E2 D
47
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {} B1 E1 B2 E2 D
48
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {} B1 E1 B2 E2 D
49
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c} B1 E1 B2 E2 D
50
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c} B1 E1 B2 E2 D
51
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c} B1 E1 B2, E2 D
52
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c, g} B1 E1 B2, E2 D
53
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c, g} B1 E1 B2, E2 D
54
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c, g, m} B1 E1 B2, E2 D
55
Set Difference Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Difference Set: {c, g, m} B1, E1 B2, E2 D
56
Set Containment template <class I1, class I2, class I3>
void g_subset_of(I1 B1, I1 E1, I2 B2, I2 E2) { while (B1 != E1 && B2 != E2) { if (*B1 < *B2) { // *B1 not in set 2 return 0; } else if (*B2 < *B1) { // *B2 not in set 1 ++B2; } else { ++B1; } if (B1 == E1) return 1;
57
Set Containment Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} B1 E1 B2 E2
58
Set Containment Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} B1 E1 B2 E2
59
Set Containment Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} B1 E1 B2 E2
60
Set Containment Illustrated
Set 1: {a, c, g, m} Set 2: {a, b, d} Return 0 B1 E1 B2 E2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.