Download presentation
Presentation is loading. Please wait.
1
Space-Saving Strategies for Computing Δ-points
Kun-Mao Chao (趙坤茂) Department of Computer Science and Information Engineering National Taiwan University, Taiwan WWW:
2
Δ-points S-(i, j): the best score of a path from (0, 0) to (i, j).
S+(i, j): the best score of a path from (i, j) to (M, N). Δ-points: S-(i, j) + S+( i, j) >= Δ S - S +
3
The leftmost/rightmost Δ-paths
For simple scoring schemes, finding the leftmost Δ-path and the rightmost Δ-path is easy. For affine gap penalties, it is more complicated.
4
Two alignments may not intersect!
5
Method 1: O(MN) time; O(MN) space
6
Method 2: O(M2N) time; O(N) space
Each row takes O(MN) time. In total, O(M) x O(MN) = O(M2N) S + M
7
Method 3: O(MN) time; O(N) space
8
Method 4: O(MN log M) time; O(N log M) space
9
Method 4: O(MN log M) time; O(N log M) space (cont’d)
… O(log M) layers M O(N) O(N) O(N) O(N) O(N)
10
Method 5: O(MN log min {M, N}) time; O(M+N) space
11
Method 6: O(MN log log min {M, N}) time; O(M+N) space
Real Size 1/25 1/23 N 1/210 1/25 1/22 M 1/29 1/219
12
Method 7: O(1/ε MN) time; O(1/ε MεN) space Here we use ε= 1/2 to illustrate the idea.
Solve each M1/2N problem M1/2 S - S + M
13
Method 8: O(1/εMN) time; O(1/ε M1+ε+ N) space Here we use ε= 1/2 to illustrate the idea.
O(N) M Solve each M1/2M problem M1/2 S - S + M
14
Methods Method 1: O(MN) time; O(MN) space
Method 2: O(M2N) time; O(M) space Method 3: O(MN) time; O(M) space Method 4: O(MN log M) time; O(N log M) space Method 5: O(MN log min {M, N}) time; O(M+N) space Method 6: O(MN log log min {M, N}) time; O(M+N) space Method 7: O(1/εMN) time; O(1/ ε MεN) space Method 8: O(1/εMN) time; O(1/ε M1+ε+ N) space
15
Bonus points O(MN) time; O(M+N) space
o(MN log log min {M, N}) time; O(M+N) space O(1/εMN) time; o(1/ε M1+ε+N) space
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.