Download presentation
Presentation is loading. Please wait.
Published byBenny Yuwono Modified over 5 years ago
1
sum of Adj. s at st. line Adj. s supp. s at a pt. Vert. opp. s corr. s eq corr. s // lines alt. s eq alt. s // lines int. s supp int. s // lines ext. s // sides opp. eq s base s // isos Transitive property of parallel lines Corr. sides, s S.S.S., S.A.S, A.S.A, A.A.S, R.H.S Corr. s, s A.A, A.A,A 3 sides proportional ratio of 2 sides, inc. Corr. sides, s corr. s, s
2
If x + y = 1800 then AB is a straight line (adj. s supp.)
3
ISOSCELES TRIANGLE A A x x y y B C B C If AB=AC then x=y (base s, isos. ) If x=y then AB=AC (sides opp.eq s)
4
Example 4 Line segment AE and BD intersect at C. AB=ED and BAC = DEC . Prove that AE and BD bisect each other. A B C D E In ABC and EDC, AB=ED (given) BAC = DEC (given) ACB = ECD (vert. opp.s) ABC EDC (A.A.S) AC=EC (corr.sides, s) BC=DC (corr.sides, s) AE and BD bisect each other
5
Classwork 5.4 1. AB=AC and ADBC . Prove that BD=CD. In ABD and ACD, A C B D AB=AC (given) AD=AD (common side) ADB =ADC=90 (given) ABC EDC (R.H.S) BD=CD (corr.sides, s)
6
Classwork 5.4 1. PT and QS are straight lines. They intersect at R, PR=T and RPQ=RTS. Prove that R is the mid-point of QS PR=TR (given) Q P R S T RPQ =RTS (given) PRT and QRS are straight lines PRQ =TRS (vert. opp. s) PRQ TRS (A.S.A) RQ=RS (corr.sides, s) R is mid pt of QS
7
Example 6 BD=cd, DBAB and DCAC. Prove that DC bisects BDC B D C A In ABD and ACD, BD=CD (given) AD=AD (common side) DBA= DCA=900 (given) ABD ACD (R.H.S) BDA= CDA (corr.sides, s) DA bisect BDC
8
Example 7 AC=AD, BC=BD, AEB and CED are straight lines. Prove that ABCD. In ABD and ABD, C B A D E AC=AD (given) BC=BD (given) AB=AB (common side) ABC ABD (S.S.S) CAB= DAB (corr.sides, s) In ABD and ABD, AC=AD (given) AE=AE (common side) CAE= DAE (proved) ACE ADE (S.A.S) AEC= AED (corr.sides, s) But AEC+AED=180 (adj. s on st. line) AEC+AED=90 ABCD
9
Example 8 AB=AC, b=c, Prove that BD=CD. A C D B b c Join BC, such that b=b1+b2 and c=c1+c2 b1=c1 (base s.isos ) b=c (given) b-b1=c-c1 b2=c2 A C D B b1 c2 c1 BD=CD (side opp. eq. s)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.