Download presentation
Presentation is loading. Please wait.
1
Update on Crab Cavity Simulations for JLEIC
Salvador Sosa Old Dominion University August 31st, 2017
2
Outline Local Scheme in JLEIC Ion Ring RF Multipoles
Voltage and Phase Tolerances CBI from Cavity HOMs
3
Luminosity reduction due to Crossing Angle
πβ12.5 π
π β0.0797
4
π ππππ =50 mrad e-beam Ion beam Initial kick: 20.82 MV
W/o crabbing Initial kick: 20.82 MV Compensation kick:
5
Crabbing by deflecting cavity (local scheme)
πΈ π = beam energy π = RF frequency π½ ππππ = beta function at CC location π½ β = beta function at IP π ππππ π = beam crossing angle Ο πΆπΆβπΌπ =phase advance from CC to IP π ππππ = π πΈ π tan π ππππ π ππ π½ ππππ π½ β sin Ο πΆπΆβπΌπ Parameter Unit Proton Energy GeV 100 Frequency MHz 952.6 Crossing angle mrad 50 Ξ²* cm 10 crab cavity location m 400 Integrated kicking voltage MV 20.8
6
Baseline Collision Optics of JLEIC Ion Ring
Parameter Proton Unit Energy 100 GeV Frequency 952.6 MHz Crossing angle 50 mrad Ξ²*x 0.1 m Ξ²crabx 400 Crab voltage 19.81 MV
8
Ion Ring Optics with switched CCBs
9
Parameter Proton Unit Energy 20 (low) 60 (medium) 100 (high) GeV Ξ²crabx 363.44 m Crab voltage 4.18 12.50 20.82 MV
10
Bunch matching in Ion Ring
Crab OFF, initial (black) and end (red) of lattice, 1 pass, 1e5 particles Crab ON, initial (black) and end (red) of lattice, 1 pass, 1e5 particles
11
Crab Cavity Voltage Ramp
12
RF Multipoles 60 mm β 4 mm pole shift 70 mm β 5 mm pole shift
13
Ion Ring DA, CC Voltage Off and On
14
Οx Flat poles Curved poles Β±50Ο Multipoles 1-cell 3-cell Unit 60mm
b2 mT -5x10-4 -3x10-4 -8x10-9 -16.08 b3 mT/m 853.2 797.5 697.1 610 35.1 217.12 b4 mT/m2 1.55 1.2 0.92 0.63 -2x10-5 321.67 b5 mT/m3 -1.2x105 -0.44x105 -1.1x105 -5.4x105 -5.7x105 -0.8x105 DA Οx Β±45.9 Β±46.6 Β±44.1 Β±47 Β±30.9 Β±46.2
15
DA limited by Final Focusing Magnets at Β±15
16
RF Voltage Tolerances Voltage noise introduces a residual angle at IP
βπ π βͺ π π₯ β π π§ tan π ~0.05 Voltage noise introduces a residual angle at IP π π₯ β =1.8um, π π§ =1.2 ππ βCrab Cavities for LHC Upgradeβ, R.Calaga
17
RF Phase Noise Phase noise translates to a bunch offset at IP
βπβͺ π π
πΉ π π₯ β π tan π ππππ ~0.02 πππ Phase noise translates to a bunch offset at IP βCrab Cavities for LHC Upgradeβ, R.Calaga
18
CC Impedance from HOMs ZAP and clinchor are both adequate for HOM studies Clinchor -> General beam fill pattern No Landau damping No broadband impendance HOM data for a 70mm aperture 3-cell RFD Will use this data to get a sense of LCBI and TCBI rise times
19
Crab Crossing Studies (Salvador)
Optimize the crabbing system for best beam stability and minimum emittance impact οΌ(WEPIK044; IPAC17) Study and specify tolerances on cavity multipole components by estimating impact on the ringβs dynamic aperture οΌ (MOPVA136,WEPIK044; IPAC17) Specify high-order mode requirements (Salvador, Todd, consider using APS code clinchor) Evaluate and optimize impedance of the crab cavities Study effects of and specify tolerances on crab cavity errors such as misalignment, amplitude and phase instability Specify requirement on the beam parameters such as maximum bunch length Complete beam dynamics simulation using an optimized field map satisfying the determined requirements
20
Extra Slides
21
General RF Properties of Cavity Designs
Squashed Elliptical Single-Cell RFD Multi-Cell RFD Unit Frequency 952.6 MHz Aperture 70 mm LOM 697.6 None 757, 862 LOM Mode Type Monopole Dipole 1st HOM 1033.1 1411.5 1335 Total Vt (e/p) (per beam per side) 2.8 / 19.83 MV Vt (per cavity) 2.2 1.2 4.2 No. of cavities 2 / 9 3 / 17 1 / 5 Ep 32 41.2 49.8 MV/m Bp 104.3 103.7 101.4 mT Rs [Rres =10 nΞ© & 2.0 K] 16.3 nΞ© Pdiss (per cavity) 4.6 2.8 7.4 W
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.