Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams.

Similar presentations


Presentation on theme: "Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams."โ€” Presentation transcript:

1 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity
Lijie Chen Ryan Williams

2 Context: The Algorithmic Method for Proving Circuit Lower Bounds
Proving limitations on non-uniform circuits is extremely hard. Prior approaches (restrictions, polynomial approximations, etc.) face barriers (Relativization, Algebrization, Natural Proofs). Explain the green box better Algorithmic Method Non-trivial circuit-analysis algorithm โ‡’ Circuit Lower Bounds. Breakthroughs where previous approaches failed (NEXP โŠ„ ACC0). Believed to be possible for strong circuits (even ๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ).

3 Context: A Frontier of Circuit Complexity, Depth-2 Threshold Circuits
THR gates : ๐‘“ ๐‘ฅ = ๐‘คโ‹…๐‘ฅโ‰ฅ๐‘ก ๐‘คโˆˆ ๐‘ ๐‘› , ๐‘กโˆˆ๐‘. MAJ gates : when ๐‘ค ๐‘– โ€™s and ๐‘ก are bounded by poly(n). THRโˆ˜THR We can also define ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ด๐‘จ๐‘ฑ ๐‘ด๐‘จ๐‘ฑโˆ˜๐‘ป๐‘ฏ๐‘น ๐‘ด๐‘จ๐‘ฑโˆ˜๐‘ด๐‘จ๐‘ฑ Donโ€™t say too many words here.. THR THR THR THR

4 Context: A Frontier of Circuit Complexity, Depth-2 Threshold Circuits
Exponential Lower Bounds are known for ๐‘€๐ด๐ฝโˆ˜๐‘€๐ด๐ฝ [Hajnal-Maass-Pudlรกk-Szegedy-Turรกnโ€™93] ๐‘€๐ด๐ฝโˆ˜๐‘‡๐ป๐‘… [Nisanโ€™94] ๐‘‡๐ป๐‘…โˆ˜๐‘€๐ด๐ฝ [Forster-Krause-Lokam-Mubarakzjanov-Schmitt-Simonโ€™01] NEXP Non-deterministic Exponential Time. Frontier Open Question: Is NEXP โŠ†๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น? Potential Approaches in this talk.

5 Motivation: Apply the Algorithmic Method to THR of THR?
What Circuit-Analysis Tasks? Non-trivial Circuit- Analysis Algorithms โ‡’Circuit Lower Bounds โ„ญ-SAT โ„ญ-CAPP Derandomization!! Estimate quantity Pr ๐‘ฅโˆผ ๐‘ˆ ๐‘› [๐ถ ๐‘ฅ =1] , with additive error ๐œ€ ๐ถ ๐ถ โˆƒ x s.t. ๐ถ ๐‘ฅ =1? You can think about eps as a constant or inverse polynomial ๐œ€: constant or inverse polynomial 2 ๐‘› / ๐‘› ๐œ”(1) time? โˆƒ๐‘ฅ ? ๐‘ฅโˆผ ๐‘ˆ ๐‘›

6 Motivation: Apply the Algorithmic Method to THR of THR?
Most previous work on the algorithmic method exploits SAT algorithms. Problem SAT of THR of THR is probably very hard. A special case is MAX-๐‘˜-SAT, for which no non-trivial ( 2 ๐‘› / ๐‘› ๐œ”(1) time) algorithm is known for ๐’Œ=๐Ž(log ๐’) and ๐‘๐‘œ๐‘™๐‘ฆ(๐‘›) clauses. Considered to be a barrier for the Algorithmic Approach. THRโˆ˜THR THR THR THR THR Put a graph here! MAX-๐‘˜-SAT MAJ ๐‘‚ ๐‘… ๐‘˜ ๐‘‚ ๐‘… ๐‘˜ ๐‘‚ ๐‘… ๐‘˜

7 Motivation: Apply the Algorithmic Method to THR of THR?
From Derandomization (CAPP) โ‡’ Circuit Lower Bounds For a circuit class โ„ญ, 2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP for (๐€๐ ๐ƒ ๐ฉ๐จ๐ฅ๐ฒ(๐’) โˆ˜๐Ž ๐‘ ๐Ÿ‘ โˆ˜๐•ฎ) โ‡’ ๐‘๐ธ๐‘‹๐‘ƒโŠ„โ„ญ [Williamsโ€™13/14, Santhanam Williamsโ€™14, Ben-Sasson Violaโ€™14] 2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP for ( ๐‘จ๐‘ช ๐ŸŽ โˆ˜๐•ฎ) โ‡’ ๐‘๐ธ๐‘‹๐‘ƒ canโ€™t be ๐‘œ(1)-approximated by โ„ญ [R. Chen Oliveira Santhanamโ€™18] 2 ๐‘›โˆ’ ๐‘› ๐œ€ -time CAPP for (๐€๐ ๐ƒ ๐ฉ๐จ๐ฅ๐ฒ(๐’) โˆ˜๐Ž ๐‘ ๐Ÿ‘ โˆ˜๐•ฎ) โ‡’ ๐‘๐‘„๐‘ƒโŠ„โ„ญ [Murray Williamsโ€™18] 2 ๐‘›โˆ’ ๐‘› ๐œ€ -time CAPP for ( ๐€๐‚ ๐ŸŽ โˆ˜๐•ฎ) โ‡’ ๐‘๐‘„๐‘ƒ canโ€™t be ๐‘œ(1)-approximated by โ„ญ [L. Chenโ€™19] SAT of THR of THR : probably very hard But derandomization is widely believed to be possible. NQP Non-deterministic Quasi-Polynomial Time. ( ๐’ ๐’‘๐’๐’๐’š๐’๐’๐’ˆ(๐’) )

8 It suffices to derandomize ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘….
Back to THR of THR SAT of THR of THR : probably very hard To show ๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…, we need to derandomize AN D poly(๐‘›) โˆ˜O R 3 โˆ˜๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…, which could be harder. Our result 1 It suffices to derandomize ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…. Our result 2 Surprisingly, it indeed only suffices to derandomize ๐‘‡๐ป๐‘…โˆ˜๐‘€๐ด๐ฝ or ๐‘€๐ด๐ฝโˆ˜๐‘€๐ด๐ฝ!

9 General Result: A Stronger Connection Between Circuit-Analysis Algorithms and Circuit Lower Bounds
For a circuit class โ„ญ: ๐Ÿ ๐’ / ๐’ ๐Ž(๐Ÿ) -time CAPP for โŠ• 2 โˆ˜โ„ญ, ๐ด๐‘ ๐ท 2 โˆ˜โ„ญ, or ๐‘‚ ๐‘… 2 โˆ˜โ„ญ โ‡’๐‘๐ธ๐‘‹๐‘ƒโŠ„โ„ญ. ๐Ÿ ๐’โˆ’ ๐’ ๐œบ -time CAPP for โŠ• 2 โˆ˜โ„ญ, ๐ด๐‘ ๐ท 2 โˆ˜โ„ญ, or ๐‘‚ ๐‘… 2 โˆ˜โ„ญ โ‡’๐‘๐‘„๐‘ƒโŠ„โ„ญ. Why the constant โ€œ2โ€? Short answer: A PCP system needs to make at least 2 queries. Long answer: See the paper๏Š

10 Tighter Connections for Algorithms/Lower Bounds for THR of THR
2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP algorithm for ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘… โ‡’๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…. Luckily, the โ€œ2โ€ doesnโ€™t matter for ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘… ๏Š โŠ• ๐Ÿ โˆ˜๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘นโŠ†๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น 2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP algorithm for ๐‘‡ ๐ถ ๐‘‘ โ‡’๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘‡ ๐ถ ๐‘‘ . ๐‘ป ๐‘ช ๐’… : depth-d, poly-size, linear threshold circuits

11 Let Us Make Our Life Even Easier
Poly-size ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น and ๐‘ด๐‘จ๐‘ฑโˆ˜๐‘ด๐‘จ๐‘ฑ are equivalent for Non-Trivial ( 2 ๐‘› / ๐‘› ๐œ”(1) time) CAPP Algorithms when ๐œ€=1/๐‘๐‘œ๐‘™๐‘ฆ ๐‘› ! THR MAJ THR THR THR MAJ MAJ MAJ Proved by new structure lemmas for ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…

12 Let Us Make Our Life Even Easier
Poly-size ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น and ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ด๐‘จ๐‘ฑ are equivalent for Non-Trivial ( 2 ๐‘› / ๐‘› ๐œ”(1) time) CAPP Algorithms for any constant ๐œ€>0! THR THR THR THR THR MAJ MAJ MAJ Proved by new structure lemmas for ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘…

13 Corollary If there are then ๐‘ต๐‘ฌ๐‘ฟ๐‘ทโŠ„๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น.
2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP for ๐‘€๐ด๐ฝโˆ˜๐‘€๐ด๐ฝ with ๐œ€=1/๐‘๐‘œ๐‘™๐‘ฆ(๐‘›), or a 2 ๐‘› / ๐‘› ๐œ”(1) -time CAPP for ๐‘‡๐ป๐‘…โˆ˜๐‘€๐ด๐ฝ with constant ๐œ€, then ๐‘ต๐‘ฌ๐‘ฟ๐‘ทโŠ„๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น.

14 Another Application: Inapproximability by Depth-2 Neural Networks
Thm For every ๐‘˜ and constant ๐›ฟ<1/2, there is a function ๐‘“โˆˆ๐‘๐‘ƒ such that ๐‘“ cannot be ๐›ฟ approximated by Depth-2 Neural Networks of size ๐‘› ๐‘˜ Depth-2 Neural Network โˆ‘ ๐‘ ๐‘ฅ โ‰” ๐‘– ๐‘ค ๐‘– โ‹…๐‘‡๐ป ๐‘… ๐‘– ๐‘ฅ โˆˆโ„ ๐‘ค 1 ๐‘ค 2 ๐‘ค 3 THR THR THR There is no circuit that on every point outputs a value off by ยฝ-eps to what is expected. Say about the linear sum of ACC0 result in words. Improved [Wilโ€™18], which proved that there is such an ๐‘“โˆˆ๐‘๐‘ƒ which cannot be exactly computed by Depth-2 Neural Networks of size ๐‘› ๐‘˜ . โˆ‘ ๐‘ ๐‘ฅ โ‰” ๐‘– ๐‘ค ๐‘– โ‹…๐‘…๐‘’๐ฟ ๐‘ˆ ๐‘– ๐‘ฅ โˆˆโ„ ๐‘ค 1 ๐‘ค 2 ๐‘ค 3 ReLU ReLU ReLU

15 Philosophy Using PCP Algorithmically to Prove Circuit Lower Bounds (Remember: PCPs are algorithms!)
If you want to prove ๐‘ท=๐‘ต๐‘ท, then PCPs should make your life much easier (now you only need an algorithm for ( ๐Ÿ• ๐Ÿ– +๐œบ)-approximation to 3-SAT!) [Hรฅstadโ€™97] PCPs are reductions, and reductions are algorithms!!! (Well, I donโ€™t really believe in ๐‘ƒ=๐‘๐‘ƒ.) We only want to derandomize circuits. But PCPs still make our life easier (though in a more indirect way)

16 Non-deterministic Algorithm for GAP-TAUT
Starting Point: Non-deterministic Derandomization Suffices for Circuit Lower Bounds โ„ญ-GAP-TAUT (tautology) [Wilโ€™13] 2 ๐‘› / ๐‘› ๐œ”(1) time non-deterministic algorithm for GAP-TAUT on poly-size general circuits with ๐œ€=1/2 โ‡’ ๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ. Distinguish between Pr ๐‘ฅ [๐ถ ๐‘ฅ =1] =1. (Yes Case) Pr ๐‘ฅ [๐ถ ๐‘ฅ =1] โ‰ค๐œ€. (No Case) ๐ถ Non-deterministic Algorithm for GAP-TAUT Given a general circuit ๐ถ, we want a 2 ๐‘› / ๐‘› ๐œ”(1) time non-deterministic algo ๐”ธ, such that: If ๐ถ is a tautology, then ๐”ธ accepts on some guesses. If Pr ๐‘ฅ ๐ถ ๐‘ฅ =1 โ‰ค1/2, ๐”ธ rejects on all guesses. ๐‘ฅโˆผ ๐‘ˆ ๐‘›

17 Proof Overview: Outline
Starting Point [Wilโ€™13] 2 ๐‘› / ๐‘› ๐œ”(1) time non-deterministic algorithm for GAP-TAUT on poly-size general circuits with ๐œ€=1/2 โ‡’ ๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ. Key point: make use of this assumption as much as possible! Assume ๐‘๐ธ๐‘‹๐‘ƒโŠ‚โ„ญ One should think about this C as THR of THR 2 ๐‘› / ๐‘› ๐œ”(1) non-deterministic GAP-TAUT for ๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ ๐‘๐ธ๐‘‹๐‘ƒโŠ„๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆโ‡’๐‘๐ธ๐‘‹๐‘ƒโŠ„โ„ญ Contradiction! Think of โ„ญ as ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘… Non-trivial CAPP on OR 3 โˆ˜โ„ญ with constant ๐œ€

18 Goal: Designing the Algorithm under Assumption
Assume ๐‘๐ธ๐‘‹๐‘ƒโŠ‚โ„ญ 2 ๐‘› / ๐‘› ๐œ”(1) non-deterministic GAP-TAUT on ๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ Think of โ„ญ as ๐‘‡๐ป๐‘…โˆ˜๐‘‡๐ป๐‘… Non-trivial CAPP on OR 3 โˆ˜โ„ญ with constant ๐œ€ ๐‘๐ด๐‘๐ท ๐‘ฅ,๐‘ฆ โ‰”๐‘๐‘‚๐‘‡(๐ด๐‘๐ท(๐‘ฅ,๐‘ฆ)) It is universal Goal Given an ๐‘๐ด๐‘๐ท circuit ๐ถ, under the two assumptions, design a 2 ๐‘› / ๐‘› ๐œ”(1) time non-deterministic algo ๐”ธ, such that: If ๐ถ is a tautology, then ๐”ธ accepts on some guesses. If Pr ๐‘ฅ ๐ถ ๐‘ฅ =1 โ‰ค1/2, ๐”ธ rejects on all guesses.

19 Review: Approach of [Wilโ€™14] Guess-and-Verify-Equivalence
๐‘๐ธ๐‘‹๐‘ƒโŠ‚โ„ญ implies ๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ collapses to โ„ญ. That is, under assumption, the given general circuit ๐ถ has an equivalent ๐•ฎ circuit ๐‘ซ. If we can find ๐‘ซ, then we can derandomize ๐ท instead, where we have algorithms! Problem: How to find ๐‘ซ? Allowed to use non-determinism so one can guess ๐ท. But still have to verify ๐ท is equivalent to ๐ถ, which seems HARD. Why we want to do this? Because we donโ€™t have algorithm for general circuits, and only algorithm for \frakturC circuits Solution Well, just guess more circuits!

20 Review: Approach of [Wilโ€™14] Guess-and-Verify-Equivalence
Suppose ๐ถ has ๐‘š gates, let ๐ถ 1 , ๐ถ 2 ,โ‹ฏ, ๐ถ ๐‘š be the corresponding sub-circuits. ๐ถ ๐‘š is the output gate. ๐ถ 1 ,โ‹ฏ, ๐ถ ๐‘› are inputs. ๐‘๐ธ๐‘‹๐‘ƒโŠ‚โ„ญ implies ๐‘ƒ/๐‘๐‘œ๐‘™๐‘ฆ collapses to โ„ญ. We guess โ„ญ circuits ๐ท 1 , ๐ท 2 ,โ‹ฏ, ๐ท ๐‘š , hoping that ๐ท ๐‘– โ‰ก ๐ถ ๐‘– . We wish to check ๐ท ๐‘š โ‰ก๐ถโ‰ก ๐ถ ๐‘š . To do this, for each ๐‘–โˆˆ{๐‘›+1,๐‘›+2,โ‹ฏ,๐‘š}, suppose gate-๐‘– has inputs from gate- ๐‘– 1 and gate- ๐‘– 2 . We verify ๐‘ต๐‘จ๐‘ต๐‘ซ ๐‘ซ ๐’Š ๐Ÿ ๐’™ , ๐‘ซ ๐’Š ๐Ÿ ๐’™ โ‰ก ๐‘ซ ๐’Š ๐’™ . Then run CAPP on ๐ท ๐‘š . Why we want to do this? Because we donโ€™t have algorithm for general circuits, and only algorithm for \frakturC circuits A different perspective on thinking about it, introducing new variables on intermediates to get a reduction from CKT-SAT to 3-SAT. Problem Checking ๐‘ต๐‘จ๐‘ต๐‘ซ ๐‘ซ ๐’Š ๐Ÿ ๐’™ , ๐‘ซ ๐’Š ๐Ÿ ๐’™ = ๐‘ซ ๐’Š ๐’™ for all ๐’™ requires solving SAT for ๐‘จ๐‘ต ๐‘ซ ๐Ÿ‘ โˆ˜๐•ฎ.

21 A Local-checkable Proof System View
Problem: the previous approach requires solving SAT for ๐ด๐‘ ๐ท 3 โˆ˜โ„ญ. Let ๐œ‹ ๐‘ฅ โ‰” ๐ท ๐‘›+1 ๐‘ฅ , ๐ท ๐‘›+2 ๐‘ฅ ,โ‹ฏ, ๐ท ๐‘š ๐‘ฅ . This is a Claimed Proof for ๐ถ ๐‘š ๐‘ฅ =1 by giving values at all gates. Intuitively, it is supposed to be the computation history of ๐‘ช on input ๐’™. What is so good about this proof ๐œ‹(๐‘ฅ)? Local checks on ๐’™โˆ˜๐…(๐’™) For each ๐‘–โˆˆ{๐‘›+1,๐‘›+2,โ‹ฏ,๐‘š}, ๐‘๐ด๐‘๐ท ๐ท ๐‘– 1 ๐‘ฅ , ๐ท ๐‘– 2 ๐‘ฅ = ๐ท ๐‘– (๐‘ฅ). ๐ท ๐‘š ๐‘ฅ =1. \pi(x) is just the computational history of C on x This is just the Cook-Levin Theorem applied to the circuit!

22 A Local-checkable Proof System View
Let ๐œ‹ ๐‘ฅ โ‰” ๐ท ๐‘›+1 ๐‘ฅ , ๐ท ๐‘›+2 ๐‘ฅ ,โ‹ฏ, ๐ท ๐‘š ๐‘ฅ . A Claimed Proof for ๐ถ ๐‘š ๐‘ฅ =1 by giving values at all gates. One can get โ„“=๐‘‚ ๐‘š =๐‘๐‘œ๐‘™๐‘ฆ(๐‘›) functions ๐น 1 , ๐น 2 ,โ‹ฏ, ๐น โ„“ on ๐‘ฅโˆ˜๐œ‹(๐‘ฅ), such that Each ๐น ๐‘– is an ๐‘ถ๐‘น of 3 bits (or their negations) from ๐‘ฅโˆ˜๐œ‹(๐‘ฅ). If ๐ถ ๐‘ฅ =1, on the correct guesses ๐ท ๐‘›+1 ,โ‹ฏ, ๐ท ๐‘š , all ๐น ๐‘– โ€™s are satisfied by ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ . (Completeness) If ๐ถ ๐‘ฅ =0, for all possible ๐œ‹ ๐‘ฅ , at least one ๐น ๐‘– is not satisfied by ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ . (Soundness) OR of 3, because any 3-CSP can be written as many OR_3 clauses

23 An Attempt Guess circuits ๐ท ๐‘›+1 ,,โ‹ฏ, ๐ท ๐‘š , let ๐œ‹ ๐‘ฅ โ‰” ๐ท ๐‘›+1 ๐‘ฅ , ๐ท ๐‘›+2 ๐‘ฅ ,โ‹ฏ, ๐ท ๐‘š ๐‘ฅ . Estimate ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ [ ๐น ๐‘– (๐‘ฅโˆ˜๐œ‹(๐‘ฅ))]. ( ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ โˆˆ๐‘‚ ๐‘… 3 โˆ˜โ„ญ.) (โ„“:number of ๐น ๐‘– โ€™s) If ๐ถ is a tautology. Then on the correct guess, ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ =1. If Pr ๐‘ฅ ๐ถ ๐‘ฅ =1 โ‰ค1/2, then on all guesses, ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ โ‰ค1โˆ’ 1 2โ„“ . Make it clear that we only assume a CAPP algo with constant error! To distinguish the above two cases, we need a CAPP algo with error 1 2โ„“ = 1 ๐‘๐‘œ๐‘™๐‘ฆ(๐‘›) . But we only assume a CAPP algo with constant error!

24 This is an extremely ``badโ€™โ€™ PCP! Why not just use the PCP theorem?
What Went Wrong? Proof System View ๐œ‹(๐‘ฅ) : a claimed proof of ๐ถ ๐‘ฅ =1 ๐น ๐‘– : local check of the verifier One can get โ„“=๐‘‚(๐‘š) functions ๐น 1 , ๐น 2 ,โ‹ฏ, ๐น โ„“ on ๐‘ฅโˆ˜๐œ‹(๐‘ฅ), such that Each ๐น ๐‘– is an ๐‘‚๐‘… of 3 bits (or their negations) from ๐‘ฅโˆ˜๐œ‹(๐‘ฅ). If ๐ถ ๐‘ฅ =1, on the correct guess ๐ท ๐‘›+1 ,โ‹ฏ, ๐ท ๐‘š , all ๐น ๐‘– โ€™s are satisfied by ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ . (Completeness is 1) If ๐ถ ๐‘ฅ =0, for all possible ๐œ‹ ๐‘ฅ , at least one ๐น ๐‘– is not satisfied by ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ . (Soundness is ๐Ÿโˆ’๐Ÿ/โ„“) If there is a verifier who picks a random ๐‘–โˆˆ โ„“ , and checks whether ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ =1. She detects an error only with probability ๐Ÿ/โ„“ when ๐ถ ๐‘ฅ =0. From now, I probably have to assume you know some basic of PCP because I donโ€™t really have time to define them. I hope itโ€™s OK, you can take a nap if you are not interested in PCPs. But come on, we are complexity theorist, we doesnโ€™t like PCP? This is an extremely ``badโ€™โ€™ PCP! Why not just use the PCP theorem?

25 Issues When Applying PCPs Directly
Use PCPs of Proximity! Like PCPs but both input and proof are given as oracles. Recall that in the end we want to estimate ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ . Key properties being used in previous attempt: These local checks ๐‘ญ ๐’Š (verifierโ€™s queries positions) do not depend on the input ๐’™! PCPs PCPs of Proximity ๐‘ฅ (input) ๐‘ฅ (input) Unlimited access I need to re work this, maybe add a graph V V 3 queries in total ๐œ‹(๐‘ฅ) (proof) ๐œ‹(๐‘ฅ) (proof) 3 queries Now, ๐น ๐‘– (๐‘ฅโˆ˜๐œ‹(๐‘ฅ)) can depend on many bits of ๐‘ฅ. ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ โˆˆ๐‘‚ ๐‘… 3 โˆ˜โ„ญ Therefore, we want a proof system for verifying ๐ถ ๐‘ฅ =1, such that given the random bits, verifier ๐‘‰ queries both input ๐‘ฅ and proof ๐œ‹(๐‘ฅ). If ๐ถ ๐‘ฅ =1, exists ๐œ‹(๐‘ฅ), such that ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) always accept. If ๐ถ ๐‘ฅ =0, for all ๐œ‹(๐‘ฅ), ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) rejects w.h.p.

26 Issues When Applying PCP Directly
Therefore, we want a proof system for verifying ๐ถ ๐‘ฅ =1, such that given the random bits, verifier ๐‘‰ queries both input ๐’™ and proof ๐…(๐’™). If ๐ถ ๐‘ฅ =1, โˆƒ ๐œ‹(๐‘ฅ), such that ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) always accept. If ๐ถ ๐‘ฅ =0, โˆ€ ๐œ‹(๐‘ฅ), ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) rejects w.h.p. Counter-example? Suppose ๐ถ computes the parity. Parity changes if we flip a random bit of ๐‘ฅ. The verifier canโ€™t distinguish unless she queried that bit. Solution Give ๐‘‰ access to an error correcting code of ๐‘ฅ!

27 Combing PCP of Proximity and ECCs
Verifier ๐‘‰ is given both the input (๐’™) and the proof ๐…(๐’™) as oracles and makes 3 queries. ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) accepts w.p. 1, when ๐ถ ๐‘ฅ =1; ๐‘‰ ๐‘ฅโˆ˜๐œ‹(๐‘ฅ) accepts w.p. ๐›ฟ<1, when ๐‘ฅ makes ๐ถ robustly output ๐ŸŽ (๐‘ช is zero in a small hamming ball around ๐‘ฅ). (like property testing) How it avoids the parity counter example? No inputs can make parity robustly output ๐ŸŽ! ๐‘ฅ (input) V 3 queries in total ๐œ‹(๐‘ฅ) (proof)

28 PCP of Proximity with ECCs
Verifier ๐‘‰ is given both the encoded input (๐ธ๐ถ๐ถ(๐‘ฅ)) and the proof ๐œ‹(๐‘ฅ) as oracles and makes 3 queries. ๐‘‰ ๐ธ๐ถ๐ถ(๐‘ฅ)โˆ˜๐œ‹(๐‘ฅ) accepts w.p. 1, when ๐ถ ๐‘ฅ =1; ๐‘‰ ๐ธ๐ถ๐ถ(๐‘ฅ)โˆ˜๐œ‹(๐‘ฅ) accepts w.p. ๐œน<๐Ÿ, when ๐ถ ๐‘ฅ =0. Use ๐‘ท๐‘ช๐‘ท of Proximity for verifying ๐‘ฌ ๐’š โ‰”๐‘ช ๐‘ซ๐‘ฌ๐‘ช ๐’š =๐Ÿ, ๐ธ๐ถ๐ถ(๐‘ฅ) makes ๐ธ(โ‹…) robustly output ๐ŸŽ when ๐ถ ๐‘ฅ =0! DEC(corrupted ๐ธ๐ถ๐ถ(๐‘ฅ)) is still ๐‘ฅ ๏Š

29 Final Algorithm Guess circuits ๐ท ๐‘›+1 ,,โ‹ฏ, ๐ท ๐‘š , let ๐œ‹ ๐‘ฅ โ‰” ๐ท ๐‘›+1 ๐‘ฅ , ๐ท ๐‘›+2 ๐‘ฅ ,โ‹ฏ, ๐ท ๐‘š ๐‘ฅ . Fix ๐ธ๐ถ๐ถ to be ๐”ฝ 2 -linear. That is, ๐ธ๐ถ๐ถ ๐‘ฅ ๐‘– is a parity on a subset of bits in ๐‘ฅ. Suppose there is uniform parity circuit in โ„ญ for now (this assumption can be avoided) Now constant error CAPP algo for ๐‘‚ ๐‘… 3 โˆ˜โ„ญ suffices! Estimate ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ [ ๐น ๐‘– (๐ธ๐ถ๐ถ(๐‘ฅ)โˆ˜๐œ‹(๐‘ฅ))]. ( ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ โˆˆ๐‘‚ ๐‘… 3 โˆ˜โ„ญ.). If ๐ถ is a tautology. Then on the correct guesses, ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ =1. If Pr ๐‘ฅ ๐ถ ๐‘ฅ =1 โ‰ค1/2, then on all guesses, ๐”ผ ๐‘–โˆˆ[โ„“] ๐”ผ ๐‘ฅ ๐น ๐‘– ๐‘ฅโˆ˜๐œ‹ ๐‘ฅ โ‰ค1โˆ’๐›ฟ/2.

30 Future Work NEW Building on the PCPP based approach, [Alman Chenโ€™19] give a construction of Razborov-rigid matrices in ๐‘ƒ ๐‘๐‘ƒ . Can we find non-trivial CAPP algorithms for ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ด๐‘จ๐‘ฑ or ๐‘ด๐‘จ๐‘ฑโˆ˜๐‘ด๐‘จ๐‘ฑ to prove circuit lower bounds for ๐‘ป๐‘ฏ๐‘นโˆ˜๐‘ป๐‘ฏ๐‘น? Recall: we know exponential lower bounds for these two models! Can we ``mineโ€™โ€™ some algorithms from these proofs?

31 Thank You


Download ppt "Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams."

Similar presentations


Ads by Google