Presentation is loading. Please wait.

Presentation is loading. Please wait.

Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015

Similar presentations


Presentation on theme: "Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015"โ€” Presentation transcript:

1 Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015

2 Contents Robinson Instability Cavity Impedance Direct Feedback

3 Robinson Instability

4 Beam Loading and Phasor Diagram
Vcavity Beam Syn. Motion - RF coupled system IG VG VB YL YS yT: Tuning angle of impedance yT < 0 for above transition tan ๐œ“ ๐‘‡ =โˆ’ ๐‘„ ๐ฟ ๐œ” ๐‘…๐น 2 โˆ’ ๐œ” ๐œ” ๐‘…๐น ๐œ” 0 ๐‘‰ ๐ผ = ๐‘… ๐ฟ 1โˆ’๐‘–tan ๐œ“ ๐‘‡ = ๐‘… ๐ฟ cos ๐œ“ ๐‘‡ ๐‘’ ๐‘–๐œ“ ; yS: Synchronous phase angle see definition in earlier slice; yL: Loading angle angle between the generator current and the cavity voltage ; IB: fundamental harmonic component of beam current IB = 2 I0, where I0 is the average beam current; w0: cavity resonance frequency, ๐œ” 0 = 1 ๐ฟ๐ถ wRF: generator RF frequency, Synchronous beam revolution frequency times harmonic number YT -IB YT

5 Criteria for R. Instability
๐Ÿ๐œ๐จ๐ฌ ๐ ๐’” ๐’€ > sin โˆ’๐Ÿ๐ >๐ŸŽ Where, ๐‘Œ= ๐‘‰ ๐‘๐‘Ÿ ๐‘‰ ๐‘”๐‘Ž๐‘

6 Cavity Equavilent Circuit
๐‘Œ= ๐‘‰ ๐‘๐‘Ÿ ๐‘‰ ๐‘”๐‘Ž๐‘ = ๐ผ ๐‘ โˆ— ๐‘… ๐‘  ๐‘‰ ๐‘”๐‘Ž๐‘

7 Direct Feedback and Lowered Effective Impedance

8 Forward Power Caculation for RF Cavity with Beam Loading
In waveguide: Forware current: If Forward voltage: Vf = Z0*If Reflected current: Ir Reflected voltage: Vr = -Z0Ir At coupler: Input current: I1 = If + Ir Input voltage: V1 = Vf + Vr = Z0(If - Ir) Output current: I2 = I1/N= (If + Ir )/N Output voltage: V2 = NV1 = NZ0(If - Ir) Cavity: Cavity current: Ic = I2 - Ib = (If + Ir )/N - Ib Cavity voltage: Vc = ZIc = Z((If + Ir )/N - Ib) Since V2 = Vc, ie, NZ0(If - Ir) = Z((If + Ir )/N - Ib) ๏ƒจ ๐‘ฐ ๐’“ = ๐‘ 2 ๐‘ 0 โˆ’๐’ ๐‘ฐ ๐’‡ +๐’๐‘ ๐‘ฐ ๐’ƒ ๐‘ 2 ๐‘ 0 +๐’ ๐‘ฝ ๐’„ = ๐‘ 2 ๐‘ 0 ๐’ 2 ๐‘ ๐‘ฐ ๐’‡ โˆ’ ๐‘ฐ ๐’ƒ ๐‘ 2 ๐‘ 0 +๐’ Use RL = (N2Z0)||R, 1 ๐‘ ๐ฟ = 1 ๐‘… ๐ฟ +๐‘ ๐ถ+ 1 ๐‘ ๐ฟ ๏ƒจ ๐‘ฝ ๐’„ = ๐’ ๐‘ณ 2 ๐‘ฐ ๐’ˆ โˆ’ ๐‘ฐ ๐’ƒ ๐ผ ๐‘” = ๐ผ ๐‘“ ๐‘ ๐‘ƒ ๐‘“ = 1 2 ๐‘…๐‘’ ๐‘ฝ ๐’‡ โˆ™ ๐‘ฐ ๐’‡ โˆ— = ๐‘ฐ ๐’‡ 2 ๐‘ 0 = ๐‘ฐ ๐’ˆ 2 ๐‘… ๐ฟ 1+๐›ฝ ๐›ฝ ๐‘ƒ ๐‘“ = 1+๐›ฝ 8 ๐‘… ๐ฟ ๐›ฝ ๐‘‰ ๐‘ ๐‘… ๐ฟ ๐ผ ๐‘ ๐‘‰ ๐‘ sin ๐œ™ ๐‘  tan ๐œ“ + ๐‘… ๐ฟ ๐ผ ๐‘ ๐‘‰ ๐‘ cos ๐œ™ ๐‘  2

9 With Feedback and Coupler
Cavity K a circulator Damper If Ir Iin IFB -Ib 1:N Coupler ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’‡ = ๐พ๐‘ฐ ๐‘ญ๐‘ฉ ๐‘ฐ ๐’‡ =โˆ’ ๐‘ฐ ๐’“ ๐ด=๐›ผ๐พ/๐‘ Due to the loop: ๐‘ฐ ๐’‡ = ๐พ๐‘ฐ ๐‘ญ๐‘ฉ = ๐พ ๐‘ฐ ๐’Š๐’ +๐ด๐‘ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐‘ญ๐‘ฉ = ๐‘ฐ ๐’Š๐’ โˆ’๐›ผ ๐พ ๐‘ฐ ๐‘ญ๐‘ฉ + ๐‘ฐ ๐’“ ๐‘ โˆ’ ๐‘ฐ ๐’ƒ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน Compare with no feedback loop case: ๐‘ฐ ๐’‡ = ๐พ๐‘ฐ ๐’Š๐’ ๐‘ฐ ๐Ÿ = ๐‘ฐ ๐’‡ + ๐‘ฐ ๐’“ = ๐พ ๐‘ฐ ๐’Š๐’ +๐ด๐‘ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ + ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน On waveguide side of the coupler: ๐‘ฝ ๐Ÿ = ๐‘ 0 ๐‘ฐ ๐’‡ โˆ’ ๐‘ฐ ๐’“ = ๐‘ 0 ๐พ ๐‘ฐ ๐’Š๐’ +๐ด๐‘ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’ 1+2๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐Ÿ = ๐‘ฐ ๐Ÿ ๐‘ = ๐‘ฐ ๐’‡ + ๐‘ฐ ๐’“ ๐‘ = ๐พ ๐‘ฐ ๐’Š๐’ +๐ด ๐‘๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ + ๐‘ฐ ๐’“ ๐‘ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน On cavity side of the coupler: ๐‘ฝ ๐Ÿ =๐‘ ๐‘ฝ ๐Ÿ =๐‘ ๐‘ 0 ๐‘ฐ ๐’‡ โˆ’ ๐‘ฐ ๐’“ = ๐‘๐‘ 0 ๐พ ๐‘ฐ ๐’Š๐’ +๐ด๐‘ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’ 1+2๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน

10 With Feedback, use Vc and Ib as Variables
๐‘ฐ ๐’„ = ๐‘ฐ ๐Ÿ โˆ’ ๐‘ฐ ๐’ƒ = ๐พ ๐‘ฐ ๐’Š๐’ โˆ’๐‘ ๐‘ฐ ๐’ƒ + ๐‘ฐ ๐’“ ๐‘+๐ด๐‘ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน When a is small, probe current is ignored In cavity: ๐‘ฝ ๐’„ = ๐’๐‘ฐ ๐’„ =๐’ ๐พ ๐‘ฐ ๐’Š๐’ โˆ’๐‘ ๐‘ฐ ๐’ƒ + ๐‘ฐ ๐’“ ๐‘+๐ด ๐‘๐’† โˆ’๐’Šโˆ†๐Ž๐œน When Ir is zero and N=1, impedance seen by beam is droped by (1+A) ๐‘ฝ ๐Ÿ = ๐‘ฝ ๐’„ ๐‘ 2 ๐‘ 0 ๐พ ๐‘ฐ ๐’Š๐’ +๐‘๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’ 1+2๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ =๐’ ๐พ ๐‘ฐ ๐’Š๐’ โˆ’๐‘ ๐‘ฐ ๐’ƒ + ๐‘ฐ ๐’“ ๐‘ฐ ๐’“ = ๐‘ 2 ๐‘ 0 โˆ’๐’ ๐พ ๐‘ฐ ๐’Š๐’ + ๐‘ 3 ๐‘ 0 ๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน +๐‘๐’ ๐‘ฐ ๐’ƒ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฝ ๐’„ = 2๐‘ ๐‘ 0 ๐’๐พ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’Š๐’ โˆ’ ๐‘ 2 ๐‘ 0 ๐’ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ ๐‘ฐ ๐’Š๐’ = ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน 2๐‘ ๐‘ 0 ๐’๐พ ๐‘ฝ ๐’„ + ๐‘ 2๐พ ๐‘ฐ ๐’ƒ ๐„๐ฑ๐ฉ๐ซ๐ž๐ฌ๐ฌ๐ž๐ ๐š๐ฌ ๐Ÿ๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐‘ฝ๐’„ ,๐‘ฐ๐’ƒ ๐‘ฐ ๐’“ = ๐‘ 2 ๐‘ 0 โˆ’๐’ 2๐‘ ๐‘ 0 ๐’ ๐‘ฝ ๐’„ + ๐‘ ๐Ÿ ๐‘ฐ ๐’ƒ ๐‘ฐ ๐’‡ = ๐พ ๐‘ฐ ๐’Š๐’ +๐‘๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’‡ = ๐‘ 2 ๐‘ 0 +๐’ 2๐‘ ๐‘ 0 ๐’ ๐‘ฝ ๐’„ + ๐‘ 2 ๐‘ฐ ๐’ƒ

11 With Feedback, Forward Power Calculation
๐‘ฐ ๐’‡ = ๐‘ 2 ๐‘ 0 +๐’ 2๐‘ ๐‘ 0 ๐’ ๐‘ฝ ๐’„ + ๐‘ 2 ๐‘ฐ ๐’ƒ ๐‘ฐ ๐’‡ = ๐พ ๐‘ฐ ๐’Š๐’ +๐‘๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ โˆ’๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’“ 1+๐ด ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐ผ ๐‘” = ๐ผ ๐‘“ ๐‘ ๐‘ฐ ๐’ˆ = 1 2 ๐’ ๐‘ณ ๐‘ฝ ๐’„ ๐‘ฐ ๐’ƒ ๐’ ๐‘ณ = ๐‘ 2 ๐‘ 0 ๐’ ๐‘ 2 ๐‘ 0 +๐’ ๐‘ฐ ๐’ˆ = ๐‘‰ ๐‘ 2 ๐’ ๐‘ณ + ๐ผ ๐‘ ๐‘’ ๐‘– ๐œ™ ๐‘  โˆ’ ๐œ‹ ๐‘ƒ ๐‘“ = 1 2 ๐‘…๐‘’ ๐‘‰ ๐‘“ โˆ™ ๐ผ ๐‘“ โˆ— = ๐ผ ๐‘“ 2 ๐‘ 0 = ๐ผ ๐‘” 2 ๐‘… ๐ฟ 1+๐›ฝ ๐›ฝ ๐‘ƒ ๐‘“ = 1+๐›ฝ 8 ๐‘… ๐ฟ ๐›ฝ ๐‘‰ ๐‘ ๐‘… ๐ฟ ๐ผ ๐‘ ๐‘‰ ๐‘ sin ๐œ™ ๐‘  tan ๐œ“ + ๐‘… ๐ฟ ๐ผ ๐‘ ๐‘‰ ๐‘ cos ๐œ™ ๐‘  2 ๐‘ ๐ฟ = ๐‘… ๐ฟ 1โˆ’๐‘– ๐‘„ ๐ฟ ๐œ” 0 ๐œ” โˆ’ ๐œ” ๐œ” 0 = ๐‘… ๐ฟ 1โˆ’๐‘– tan ๐œ“

12 Impedance Open loop Closed loop ๐‘ฝ ๐’„ = ๐‘ 2 ๐‘ 0 ๐’ 2 ๐‘ฐ ๐’ˆ โˆ’ ๐‘ฐ ๐’ƒ ๐‘ 2 ๐‘ 0 +๐’
๐‘ฝ ๐’„ = ๐‘ 2 ๐‘ 0 ๐’ 2 ๐‘ฐ ๐’ˆ โˆ’ ๐‘ฐ ๐’ƒ ๐‘ 2 ๐‘ 0 +๐’ ๐‘ฝ ๐’„ = 2๐‘ ๐‘ 0 ๐’๐พ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’Š๐’ โˆ’ ๐‘ 2 ๐‘ 0 ๐’ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ ๐‘ฝ ๐’„,๐’ƒ = โˆ’ ๐‘ 2 ๐‘ 0 ๐’ ๐’+ ๐‘ 2 ๐‘ 0 +2๐ด ๐‘ 2 ๐‘ 0 ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ = โˆ’ ๐’ ๐‘ณ ๐’ ๐’+2๐ด ๐’ ๐‘ณ ๐’† โˆ’๐’Šโˆ†๐Ž๐œน ๐‘ฐ ๐’ƒ ๐‘ฝ ๐’„, ๐’ƒ = โˆ’ ๐’ ๐‘ณ ๐‘ฐ ๐’ƒ ๐‘ฝ ๐’„,๐’ƒ = โˆ’1 1 ๐‘… ๐ฟ + 2๐ด ๐‘… ๐‘ฐ ๐’ƒ =โˆ’ ๐‘… ๐ฟ โˆฅ ๐‘… 2๐ด ๐‘ฐ ๐’ƒ =โˆ’ ๐‘… 1+๐›ฝ+2๐ด ๐‘ฐ ๐’ƒ ๐‘ฝ ๐’„, ๐’ƒ = โˆ’๐‘… ๐ฟ ๐‘ฐ ๐’ƒ When on resonance ๐‘ฝ ๐’„,๐’ƒ = โˆ’ ๐‘… ๐ฟ 1+๐ด ๐‘ฐ ๐’ƒ RL = R/2 when matched ๐’ ๐‘ณ = ๐‘ 2 ๐‘ 0 ๐’ ๐‘ 2 ๐‘ 0 +๐’ ๐‘… ๐ฟ = ๐‘ 2 ๐‘ 0 ๐‘… ๐‘ 2 ๐‘ 0 +๐‘…

13 Robinson Instability Alleviated with Direct Feedback
Energy = 5 GeV, Current = 3 A, Cavity Number = 10 A = 0, R. Instability Condition = 0.0 A = 8.5, R. Instability Condition = 0.09 Impedance Phase Angle Real Impedance A = 0 A = 8.5 A = 0 A = 8.5

14 Direct Feedback Loop Stability
Loop transfer function Nyquist Plot 45o phase margin ๐‘จ ๐’Ž๐’‚๐’™ = ๐‘ธ ๐‘ณ ๐Ÿ’๐’‡๐œน โˆ’๐Ÿ Group delay of PEP II cavity is 350 nSec ๏ƒจ Amax = 8.78

15 Conclusion We need direct feedback to lower the cavity impedance seen by the beam No extra power is needed for the loop There is limitation for the direct feedback, comb filter feedback is needed for further multi-bunhch instability studies.


Download ppt "Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015"

Similar presentations


Ads by Google