Download presentation
Presentation is loading. Please wait.
Published byHortense Chandler Modified over 5 years ago
1
Direct Feedback Analysis for RF Cavity System Shaoheng Wang 6/18/2015
2
Contents Robinson Instability Cavity Impedance Direct Feedback
3
Robinson Instability
4
Beam Loading and Phasor Diagram
Vcavity Beam Syn. Motion - RF coupled system IG VG VB YL YS yT: Tuning angle of impedance yT < 0 for above transition tan ๐ ๐ =โ ๐ ๐ฟ ๐ ๐
๐น 2 โ ๐ ๐ ๐
๐น ๐ 0 ๐ ๐ผ = ๐
๐ฟ 1โ๐tan ๐ ๐ = ๐
๐ฟ cos ๐ ๐ ๐ ๐๐ ; yS: Synchronous phase angle see definition in earlier slice; yL: Loading angle angle between the generator current and the cavity voltage ; IB: fundamental harmonic component of beam current IB = 2 I0, where I0 is the average beam current; w0: cavity resonance frequency, ๐ 0 = 1 ๐ฟ๐ถ wRF: generator RF frequency, Synchronous beam revolution frequency times harmonic number YT -IB YT
5
Criteria for R. Instability
๐๐๐จ๐ฌ ๐ ๐ ๐ > sin โ๐๐ >๐ Where, ๐= ๐ ๐๐ ๐ ๐๐๐
6
Cavity Equavilent Circuit
๐= ๐ ๐๐ ๐ ๐๐๐ = ๐ผ ๐ โ ๐
๐ ๐ ๐๐๐
7
Direct Feedback and Lowered Effective Impedance
8
Forward Power Caculation for RF Cavity with Beam Loading
In waveguide: Forware current: If Forward voltage: Vf = Z0*If Reflected current: Ir Reflected voltage: Vr = -Z0Ir At coupler: Input current: I1 = If + Ir Input voltage: V1 = Vf + Vr = Z0(If - Ir) Output current: I2 = I1/N= (If + Ir )/N Output voltage: V2 = NV1 = NZ0(If - Ir) Cavity: Cavity current: Ic = I2 - Ib = (If + Ir )/N - Ib Cavity voltage: Vc = ZIc = Z((If + Ir )/N - Ib) Since V2 = Vc, ie, NZ0(If - Ir) = Z((If + Ir )/N - Ib) ๏จ ๐ฐ ๐ = ๐ 2 ๐ 0 โ๐ ๐ฐ ๐ +๐๐ ๐ฐ ๐ ๐ 2 ๐ 0 +๐ ๐ฝ ๐ = ๐ 2 ๐ 0 ๐ 2 ๐ ๐ฐ ๐ โ ๐ฐ ๐ ๐ 2 ๐ 0 +๐ Use RL = (N2Z0)||R, 1 ๐ ๐ฟ = 1 ๐
๐ฟ +๐ ๐ถ+ 1 ๐ ๐ฟ ๏จ ๐ฝ ๐ = ๐ ๐ณ 2 ๐ฐ ๐ โ ๐ฐ ๐ ๐ผ ๐ = ๐ผ ๐ ๐ ๐ ๐ = 1 2 ๐
๐ ๐ฝ ๐ โ ๐ฐ ๐ โ = ๐ฐ ๐ 2 ๐ 0 = ๐ฐ ๐ 2 ๐
๐ฟ 1+๐ฝ ๐ฝ ๐ ๐ = 1+๐ฝ 8 ๐
๐ฟ ๐ฝ ๐ ๐ ๐
๐ฟ ๐ผ ๐ ๐ ๐ sin ๐ ๐ tan ๐ + ๐
๐ฟ ๐ผ ๐ ๐ ๐ cos ๐ ๐ 2
9
With Feedback and Coupler
Cavity K a circulator Damper If Ir Iin IFB -Ib 1:N Coupler ๐ โ๐โ๐๐น ๐ฐ ๐ = ๐พ๐ฐ ๐ญ๐ฉ ๐ฐ ๐ =โ ๐ฐ ๐ ๐ด=๐ผ๐พ/๐ Due to the loop: ๐ฐ ๐ = ๐พ๐ฐ ๐ญ๐ฉ = ๐พ ๐ฐ ๐๐ +๐ด๐ ๐ โ๐โ๐๐น ๐ฐ ๐ โ๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ญ๐ฉ = ๐ฐ ๐๐ โ๐ผ ๐พ ๐ฐ ๐ญ๐ฉ + ๐ฐ ๐ ๐ โ ๐ฐ ๐ ๐ โ๐โ๐๐น Compare with no feedback loop case: ๐ฐ ๐ = ๐พ๐ฐ ๐๐ ๐ฐ ๐ = ๐ฐ ๐ + ๐ฐ ๐ = ๐พ ๐ฐ ๐๐ +๐ด๐ ๐ โ๐โ๐๐น ๐ฐ ๐ + ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น On waveguide side of the coupler: ๐ฝ ๐ = ๐ 0 ๐ฐ ๐ โ ๐ฐ ๐ = ๐ 0 ๐พ ๐ฐ ๐๐ +๐ด๐ ๐ โ๐โ๐๐น ๐ฐ ๐ โ 1+2๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ = ๐ฐ ๐ ๐ = ๐ฐ ๐ + ๐ฐ ๐ ๐ = ๐พ ๐ฐ ๐๐ +๐ด ๐๐ โ๐โ๐๐น ๐ฐ ๐ + ๐ฐ ๐ ๐ 1+๐ด ๐ โ๐โ๐๐น On cavity side of the coupler: ๐ฝ ๐ =๐ ๐ฝ ๐ =๐ ๐ 0 ๐ฐ ๐ โ ๐ฐ ๐ = ๐๐ 0 ๐พ ๐ฐ ๐๐ +๐ด๐ ๐ โ๐โ๐๐น ๐ฐ ๐ โ 1+2๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น
10
With Feedback, use Vc and Ib as Variables
๐ฐ ๐ = ๐ฐ ๐ โ ๐ฐ ๐ = ๐พ ๐ฐ ๐๐ โ๐ ๐ฐ ๐ + ๐ฐ ๐ ๐+๐ด๐ ๐ โ๐โ๐๐น When a is small, probe current is ignored In cavity: ๐ฝ ๐ = ๐๐ฐ ๐ =๐ ๐พ ๐ฐ ๐๐ โ๐ ๐ฐ ๐ + ๐ฐ ๐ ๐+๐ด ๐๐ โ๐โ๐๐น When Ir is zero and N=1, impedance seen by beam is droped by (1+A) ๐ฝ ๐ = ๐ฝ ๐ ๐ 2 ๐ 0 ๐พ ๐ฐ ๐๐ +๐๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ โ 1+2๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ =๐ ๐พ ๐ฐ ๐๐ โ๐ ๐ฐ ๐ + ๐ฐ ๐ ๐ฐ ๐ = ๐ 2 ๐ 0 โ๐ ๐พ ๐ฐ ๐๐ + ๐ 3 ๐ 0 ๐ด ๐ โ๐โ๐๐น +๐๐ ๐ฐ ๐ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฝ ๐ = 2๐ ๐ 0 ๐๐พ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฐ ๐๐ โ ๐ 2 ๐ 0 ๐ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฐ ๐ ๐ฐ ๐๐ = ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น 2๐ ๐ 0 ๐๐พ ๐ฝ ๐ + ๐ 2๐พ ๐ฐ ๐ ๐๐ฑ๐ฉ๐ซ๐๐ฌ๐ฌ๐๐ ๐๐ฌ ๐๐ฎ๐ง๐๐ญ๐ข๐จ๐ง ๐จ๐ ๐ฝ๐ ,๐ฐ๐ ๐ฐ ๐ = ๐ 2 ๐ 0 โ๐ 2๐ ๐ 0 ๐ ๐ฝ ๐ + ๐ ๐ ๐ฐ ๐ ๐ฐ ๐ = ๐พ ๐ฐ ๐๐ +๐๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ โ๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ = ๐ 2 ๐ 0 +๐ 2๐ ๐ 0 ๐ ๐ฝ ๐ + ๐ 2 ๐ฐ ๐
11
With Feedback, Forward Power Calculation
๐ฐ ๐ = ๐ 2 ๐ 0 +๐ 2๐ ๐ 0 ๐ ๐ฝ ๐ + ๐ 2 ๐ฐ ๐ ๐ฐ ๐ = ๐พ ๐ฐ ๐๐ +๐๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ โ๐ด ๐ โ๐โ๐๐น ๐ฐ ๐ 1+๐ด ๐ โ๐โ๐๐น ๐ผ ๐ = ๐ผ ๐ ๐ ๐ฐ ๐ = 1 2 ๐ ๐ณ ๐ฝ ๐ ๐ฐ ๐ ๐ ๐ณ = ๐ 2 ๐ 0 ๐ ๐ 2 ๐ 0 +๐ ๐ฐ ๐ = ๐ ๐ 2 ๐ ๐ณ + ๐ผ ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ = 1 2 ๐
๐ ๐ ๐ โ ๐ผ ๐ โ = ๐ผ ๐ 2 ๐ 0 = ๐ผ ๐ 2 ๐
๐ฟ 1+๐ฝ ๐ฝ ๐ ๐ = 1+๐ฝ 8 ๐
๐ฟ ๐ฝ ๐ ๐ ๐
๐ฟ ๐ผ ๐ ๐ ๐ sin ๐ ๐ tan ๐ + ๐
๐ฟ ๐ผ ๐ ๐ ๐ cos ๐ ๐ 2 ๐ ๐ฟ = ๐
๐ฟ 1โ๐ ๐ ๐ฟ ๐ 0 ๐ โ ๐ ๐ 0 = ๐
๐ฟ 1โ๐ tan ๐
12
Impedance Open loop Closed loop ๐ฝ ๐ = ๐ 2 ๐ 0 ๐ 2 ๐ฐ ๐ โ ๐ฐ ๐ ๐ 2 ๐ 0 +๐
๐ฝ ๐ = ๐ 2 ๐ 0 ๐ 2 ๐ฐ ๐ โ ๐ฐ ๐ ๐ 2 ๐ 0 +๐ ๐ฝ ๐ = 2๐ ๐ 0 ๐๐พ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฐ ๐๐ โ ๐ 2 ๐ 0 ๐ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฐ ๐ ๐ฝ ๐,๐ = โ ๐ 2 ๐ 0 ๐ ๐+ ๐ 2 ๐ 0 +2๐ด ๐ 2 ๐ 0 ๐ โ๐โ๐๐น ๐ฐ ๐ = โ ๐ ๐ณ ๐ ๐+2๐ด ๐ ๐ณ ๐ โ๐โ๐๐น ๐ฐ ๐ ๐ฝ ๐, ๐ = โ ๐ ๐ณ ๐ฐ ๐ ๐ฝ ๐,๐ = โ1 1 ๐
๐ฟ + 2๐ด ๐
๐ฐ ๐ =โ ๐
๐ฟ โฅ ๐
2๐ด ๐ฐ ๐ =โ ๐
1+๐ฝ+2๐ด ๐ฐ ๐ ๐ฝ ๐, ๐ = โ๐
๐ฟ ๐ฐ ๐ When on resonance ๐ฝ ๐,๐ = โ ๐
๐ฟ 1+๐ด ๐ฐ ๐ RL = R/2 when matched ๐ ๐ณ = ๐ 2 ๐ 0 ๐ ๐ 2 ๐ 0 +๐ ๐
๐ฟ = ๐ 2 ๐ 0 ๐
๐ 2 ๐ 0 +๐
13
Robinson Instability Alleviated with Direct Feedback
Energy = 5 GeV, Current = 3 A, Cavity Number = 10 A = 0, R. Instability Condition = 0.0 A = 8.5, R. Instability Condition = 0.09 Impedance Phase Angle Real Impedance A = 0 A = 8.5 A = 0 A = 8.5
14
Direct Feedback Loop Stability
Loop transfer function Nyquist Plot 45o phase margin ๐จ ๐๐๐ = ๐ธ ๐ณ ๐๐๐น โ๐ Group delay of PEP II cavity is 350 nSec ๏จ Amax = 8.78
15
Conclusion We need direct feedback to lower the cavity impedance seen by the beam No extra power is needed for the loop There is limitation for the direct feedback, comb filter feedback is needed for further multi-bunhch instability studies.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.