Download presentation
Presentation is loading. Please wait.
Published byVictoria Nordli Modified over 5 years ago
1
Field Quality Requirement Study of Triplet FFQ for JLEIC ion collider ring
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC) JLEIC Meeting, JLab, March 3, 2016 F. Lin
2
Contents Overview at similar machines LHC RHIC Tevatron
Multipole limit survey of FFQ for JLEIC ion collider ring Simulation method Multipole sensitivity and limit due to 10 σ of beam Coil Aperture and reference radius Multipole limit with FFQ aperture which physics group suggested
3
Multipoles of FFQ in LHC
Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km
4
Multipoles of FFQ in LHC
Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km Old LHC HL-LHC Gradient ~210 T/m ~140 T/m Aperture 70 mm 150 mm Reference 17 mm 50 mm JLEIC-FFQ upstream downstream
5
Multipoles of FFQ in LHC
Aperture definition Inner aperture beam envelope (10 σ per beam), beam separation (10 σ), β-beating (20%), peak orbit excursion (2 mm) mechanical tolerance (1.6 mm), spurious dispersion orbit d (1 mm) Q1: 98 mm Q2-Q3-D1: 118 mm With Beam screen, Coil Aperture: 150mm Reference radius = Coil Aperture/3 = 50mm Beam halo: 12s
6
Multipoles of FFQ in LHC
Multipoles of FFQ in Old LHC bn: normal multipole; an: skew multipole
7
Multipoles of FFQ in LHC
Multipoles of FFQ in HL-LHC bn: normal multipole; an: skew multipole Design data & DA modified data
8
Multipoles of FFQ in LHC
Reference DAmin=6.79s DAmin=10.69s DA with multipole data DA with modified multipole data
9
Multipoles of FFQ in RHIC
10
Multipoles of FFQ in RHIC
Gradient ~48.1 T/m Aperture 130 mm Reference 40 mm
11
Multipoles of FFQ in LHC
Aperture : Coil aperture: 130 mm; reference radius : 40 mm proton Design: 250 GeV, 20 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 16 sigma; reference radius : ~ 10 sigma Experiment: 100 GeV, Dec 2011~ Jan 2012 Au 100 GeV, 40 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 7 sigma; reference radius : ~ 5 sigma
12
Multipoles of FFQ in RHIC
13
Multipoles of FFQ in Tevatron
Layout of Tevatron
14
JLEIC Ion Collider Ring
Q S ALL 133 205 75 IR area 2 6 β> 200 m 21 19 8
15
Simulation setup & method
16
Simulation setup & method
1,000 turns ELEGANT Dynamic Aperture (line Mode,41 angles) 60 GeV / 100 GeV beam energy Tune = 25.22, 23.16 Normalized emittance = 0.35 mm-rad / 0.07 mm-rad σx: m σy: m
17
Simulation setup & method
1000 turns is selected. And ~ 0.5 sigma of DA result compared with DA result by turns Time needed 1k turns: 10 days 5k turns: 50 days 10k turns: 100 days 10 turns 100 turns 1000 turns 5000 turns 10000 turns
18
Simulation setup & method
Multipoles Normal: Systematic + Random Skew: Systematic + Random
19
Simulation setup & method
Single Multipole: Normal Systematic Combined result: Normal Systematic Normal + Skew Systematic Single Multipole: Skew Systematic Combined result: Skew Systematic
20
Simulation setup & method
2 3 4 ~35 σ of H & V: 3.5*(2.32, 0.46) 60 GeV 5 6 7
21
Simulation setup & method
8 9 10 ~35 σ of H & V: 3.5*(2.32, 0.46) 60 GeV 11 12 13
22
Simulation setup & method
20 σ of H & V: 2*(2.32, 0.46) 60 GeV
23
Multipole limit survey of FFQ
Single Multipole: 20 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 20 σ of H & V Skew Systematic Combined result: 12 σ of H & V Skew Systematic
24
Survey of FFQ normal systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 11 2.46 6.92 8.55 1.45 3.08 3.83 1.125E-01 1.14 JLEIC-minus -10.4 -2.8 -6.35 -1.09 -1.34 -2.28 -3.6 -6.93 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.67 3.63 1.06 JLEIC-minus -2.08 -3.43 -6.42
25
Survey of FFQ skew systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 14.8 2.4 5.5 5.67 5.59 1.5 1.3 5.09 4.03 JLEIC-minus -14.8 -2.4 -5.5 -5.6 -5.59 -1.5 -1.29 -5.05 -3.76 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1.61 1.21 4.3 JLEIC-minus -1.51 -1.21 -4.3
26
Multipole limit survey of FFQ
Single Multipole: 16 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 17 σ of H & V Skew Systematic
27
Survey of FFQ normal systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 3.92 1.63 7.51 7.4 JLEIC-minus -1 -3.92 -1.63 -7.51 -7.4 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.83 E-01 3.87 1.77 JLEIC-minus -3.83 -3.87 -1.77
28
Survey of FFQ skew systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 1.98 5 6.67 2.22 2.69 JLEIC-minus -1 -1.98 -5 -6.67 -2.22 -2.69 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1. E-01 1.2 3.44 JLEIC-minus -1. -1.2 -3.44
29
Scaling method to make comparison
Scaling with reference radius r0 and coil diameter dc coil diameter inner diameter ? Scaling with peak IT beta function bmax to keep contribution of the IT field non-linear resonance driving terms constant. where n=2 is for a quadrupole, etc. BQ is the main quadrupole field at r0
30
Different aperture of FFQ
According to different aperture in these 6 FFQ, different reference radius is setup in the simulation due to 15 sigma
31
Multipole limit survey of FFQ
Single Multipole: 18 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 18 σ of H & V Skew Systematic Combined result: 11 σ of H & V Skew Systematic
32
Survey of FFQ normal systematic multipole
Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 0.91 0.56 JLEIC-minus -1 -0.91 -0.56 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 0.55 0.36 0.43 JLEIC-minus -0.55 -0.36 -0.43
33
Survey of FFQ skew systematic multipole
Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 9.33 6.68 6.55 JLEIC-minus -1 -9.33 -6.68 -6.55 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 3.57 E-01 3.35 1.59 JLEIC-minus -3.57 -3.35 -1.59
34
Summary Multipole Limit Survey is preliminarily studied for FFQ of JLEIC ion ring. Considering LHC and RHIC case, Multipole limit looks in range of current technology level of superconduct magnets, except one thing which is the large aperture of last two downstream FFQ. Last two FFQ have inner aperture of 157 mm and 170 mm. It is a good thing for low multipole, but looks too large considering superconduct magnet in LHC and RHIC?
35
Summary Deep study should be done considering:
Make sure of emittance after cooling Make sure of physical aperture with physics group Multipole limit study for heavy ion Supercomputer is needed to get accurate result with 100,000 turns (1000 turns now) 200 GeV of JLEIC ion ring ?
36
Thank you F. Lin
37
Multipole limit survey of FFQ
Single Multipole: 20 σ of H & V Combined result: 12 σ of H & V 12 σ of H & V: 1.2*(2.32, 0.46) 60 GeV
38
LHC FFQ measured multipoles
39
Multipoles of FFQ & large-beta dipole in LHC
40
Multipoles of FFQ & large-beta dipole in LHC
41
Multipoles of FFQ & large-beta dipole in LHC
42
Discussion: a standard of FFQ multipoles
43
Multipoles of FFQ in LHC
: Gaussian distributed random variables cut at 1.5 sigma. Same for all magnets of a given class, but changes from seed to seed variables cut at 3 sigma. Changes also from magnet to magnet G. Sabbi, E. Todesco, “Requirements for Nb3Sn Inner Triplet and Comparison With Present State of the Art”, HILUMILHC-MIL-MS-33, 2012. WEPEA048, IPAC2013
44
Multipoles of FFQ in LHC (Yuri)
Magnets field quality specifications, Nosochkov, Yuri (SLAC) et al, 28 Nov. 2014
45
Multipoles of FFQ in LHC
46
Multipoles of FFQ in LHC
47
Scaling method to make comparison
Scaling with reference radius r0 and coil diameter dc
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.