Presentation is loading. Please wait.

Presentation is loading. Please wait.

G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)

Similar presentations


Presentation on theme: "G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)"— Presentation transcript:

1  Field Quality Requirement Study of Triplet FFQ for JLEIC ion collider ring
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC) JLEIC Meeting, JLab, March 3, 2016 F. Lin

2 Contents Overview at similar machines LHC RHIC Tevatron
Multipole limit survey of FFQ for JLEIC ion collider ring Simulation method Multipole sensitivity and limit due to 10 σ of beam Coil Aperture and reference radius Multipole limit with FFQ aperture which physics group suggested

3 Multipoles of FFQ in LHC
Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km

4 Multipoles of FFQ in LHC
Old LHC b* = 55/55 cm HL-LHC b* = 15/15 cm bmax~ 4.5km bmax~ 21.5km Old LHC HL-LHC Gradient ~210 T/m ~140 T/m Aperture 70 mm 150 mm Reference 17 mm 50 mm JLEIC-FFQ upstream downstream

5 Multipoles of FFQ in LHC
Aperture definition Inner aperture beam envelope (10 σ per beam), beam separation (10 σ), β-beating (20%), peak orbit excursion (2 mm) mechanical tolerance (1.6 mm), spurious dispersion orbit d (1 mm) Q1: 98 mm Q2-Q3-D1: 118 mm With Beam screen, Coil Aperture: 150mm Reference radius = Coil Aperture/3 = 50mm Beam halo: 12s

6 Multipoles of FFQ in LHC
Multipoles of FFQ in Old LHC bn: normal multipole; an: skew multipole

7 Multipoles of FFQ in LHC
Multipoles of FFQ in HL-LHC bn: normal multipole; an: skew multipole Design data & DA modified data

8 Multipoles of FFQ in LHC
Reference DAmin=6.79s DAmin=10.69s DA with multipole data DA with modified multipole data

9 Multipoles of FFQ in RHIC

10 Multipoles of FFQ in RHIC
Gradient ~48.1 T/m Aperture 130 mm Reference 40 mm

11 Multipoles of FFQ in LHC
Aperture : Coil aperture: 130 mm; reference radius : 40 mm proton Design: 250 GeV, 20 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 16 sigma; reference radius : ~ 10 sigma Experiment: 100 GeV, Dec 2011~ Jan 2012 Au 100 GeV, 40 pi mm-mrad (IBS, nor. 95%), Beta_max= 1400 Coil aperture: ~ 7 sigma; reference radius : ~ 5 sigma

12 Multipoles of FFQ in RHIC

13 Multipoles of FFQ in Tevatron
Layout of Tevatron

14 JLEIC Ion Collider Ring
Q S ALL 133 205 75 IR area 2 6 β> 200 m 21 19 8

15 Simulation setup & method

16 Simulation setup & method
1,000 turns ELEGANT Dynamic Aperture (line Mode,41 angles) 60 GeV / 100 GeV beam energy Tune = 25.22, 23.16 Normalized emittance = 0.35 mm-rad / 0.07 mm-rad σx: m σy: m

17 Simulation setup & method
1000 turns is selected. And ~ 0.5 sigma of DA result compared with DA result by turns Time needed 1k turns: 10 days 5k turns: 50 days 10k turns: 100 days 10 turns 100 turns 1000 turns 5000 turns 10000 turns

18 Simulation setup & method
Multipoles Normal: Systematic + Random Skew: Systematic + Random

19 Simulation setup & method
Single Multipole: Normal Systematic Combined result: Normal Systematic Normal + Skew Systematic Single Multipole: Skew Systematic Combined result: Skew Systematic

20 Simulation setup & method
2 3 4 ~35 σ of H & V: 3.5*(2.32, 0.46) 60 GeV 5 6 7

21 Simulation setup & method
8 9 10 ~35 σ of H & V: 3.5*(2.32, 0.46) 60 GeV 11 12 13

22 Simulation setup & method
20 σ of H & V: 2*(2.32, 0.46) 60 GeV

23 Multipole limit survey of FFQ
Single Multipole: 20 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 20 σ of H & V Skew Systematic Combined result: 12 σ of H & V Skew Systematic

24 Survey of FFQ normal systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 11 2.46 6.92 8.55 1.45 3.08 3.83 1.125E-01 1.14 JLEIC-minus -10.4 -2.8 -6.35 -1.09 -1.34 -2.28 -3.6 -6.93 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.67 3.63 1.06 JLEIC-minus -2.08 -3.43 -6.42

25 Survey of FFQ skew systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 14.8 2.4 5.5 5.67 5.59 1.5 1.3 5.09 4.03 JLEIC-minus -14.8 -2.4 -5.5 -5.6 -5.59 -1.5 -1.29 -5.05 -3.76 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1.61 1.21 4.3 JLEIC-minus -1.51 -1.21 -4.3

26 Multipole limit survey of FFQ
Single Multipole: 16 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 17 σ of H & V Skew Systematic

27 Survey of FFQ normal systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 3.92 1.63 7.51 7.4 JLEIC-minus -1 -3.92 -1.63 -7.51 -7.4 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 3.83 E-01 3.87 1.77 JLEIC-minus -3.83 -3.87 -1.77

28 Survey of FFQ skew systematic multipole
Multipole of FFQ at radius mm (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 1.98 5 6.67 2.22 2.69 JLEIC-minus -1 -1.98 -5 -6.67 -2.22 -2.69 Multipole of FFQ at radius mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 1. E-01 1.2 3.44 JLEIC-minus -1. -1.2 -3.44

29 Scaling method to make comparison
Scaling with reference radius r0 and coil diameter dc coil diameter inner diameter ? Scaling with peak IT beta function bmax to keep contribution of the IT field non-linear resonance driving terms constant. where n=2 is for a quadrupole, etc. BQ is the main quadrupole field at r0

30 Different aperture of FFQ
According to different aperture in these 6 FFQ, different reference radius is setup in the simulation due to 15 sigma

31 Multipole limit survey of FFQ
Single Multipole: 18 σ of H & V Normal Systematic Combined result: 12 σ of H & V Normal Systematic 10 σ of H & V Normal + Skew Systematic Single Multipole: 18 σ of H & V Skew Systematic Combined result: 11 σ of H & V Skew Systematic

32 Survey of FFQ normal systematic multipole
Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R -5.14 E-02 -1.51 E-01 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 LHC mm) 0.75 0.64 0.09 -0.37 -0.02 0.02 0.04 -0.01 JLEIC-plus 1 0.91 0.56 JLEIC-minus -1 -0.91 -0.56 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-03 -1.22 E-02 -1.42 JLEIC-plus 0.55 0.36 0.43 JLEIC-minus -0.55 -0.36 -0.43

33 Survey of FFQ skew systematic multipole
Multipole of FFQ (unit: 1_10^-4) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ QD4R 5.28 E-01 4.02 E-02 6.21 4.32 2.53 -2.59 4.60 -1.87 4.84 E-03 LHC mm) -0.82 -0.06 -0.47 -0.02 0.02 -0.03 -0.04 JLEIC-plus 1 9.33 6.68 6.55 JLEIC-minus -1 -9.33 -6.68 -6.55 Multipole of FFQ (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -8.99 E-03 -8.22 -1.01 E-02 JLEIC-plus 3.57 E-01 3.35 1.59 JLEIC-minus -3.57 -3.35 -1.59

34 Summary Multipole Limit Survey is preliminarily studied for FFQ of JLEIC ion ring. Considering LHC and RHIC case, Multipole limit looks in range of current technology level of superconduct magnets, except one thing which is the large aperture of last two downstream FFQ. Last two FFQ have inner aperture of 157 mm and 170 mm. It is a good thing for low multipole, but looks too large considering superconduct magnet in LHC and RHIC?

35 Summary Deep study should be done considering:
Make sure of emittance after cooling Make sure of physical aperture with physics group Multipole limit study for heavy ion Supercomputer is needed to get accurate result with 100,000 turns (1000 turns now) 200 GeV of JLEIC ion ring ?

36 Thank you F. Lin

37 Multipole limit survey of FFQ
Single Multipole: 20 σ of H & V Combined result: 12 σ of H & V 12 σ of H & V: 1.2*(2.32, 0.46) 60 GeV

38 LHC FFQ measured multipoles

39 Multipoles of FFQ & large-beta dipole in LHC

40 Multipoles of FFQ & large-beta dipole in LHC

41 Multipoles of FFQ & large-beta dipole in LHC

42 Discussion: a standard of FFQ multipoles

43 Multipoles of FFQ in LHC
: Gaussian distributed random variables cut at 1.5 sigma. Same for all magnets of a given class, but changes from seed to seed variables cut at 3 sigma. Changes also from magnet to magnet G. Sabbi, E. Todesco, “Requirements for Nb3Sn Inner Triplet and Comparison With Present State of the Art”, HILUMILHC-MIL-MS-33, 2012. WEPEA048, IPAC2013

44 Multipoles of FFQ in LHC (Yuri)
Magnets field quality specifications, Nosochkov, Yuri (SLAC) et al, 28 Nov. 2014

45 Multipoles of FFQ in LHC

46 Multipoles of FFQ in LHC

47 Scaling method to make comparison
Scaling with reference radius r0 and coil diameter dc


Download ppt "G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)"

Similar presentations


Ads by Google