Download presentation
Presentation is loading. Please wait.
Published byMary Chandler Modified over 5 years ago
1
Towards a Classification of Non-interactive Computational Assumptions in Cyclic Groups
Essam Ghadafi University of the West of England Jens Groth University College London TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAA
2
Prime order cyclic group
Group generator ๐บ,๐ โGen( 1 ๐ ) Group ๐บ of known prime order ๐ Uniformly random generator ๐ such that ๐บ=โฉ๐โช Efficiently computable group operations Generic group model Adversary restricted to group operations and equality testing
3
Computational problems in cyclic groups
For now, just single cyclic group ๐บ,๐ of prime order ๐. Later, bilinear groups with pairings ( ๐บ 1 , ๐บ 2 , ๐บ ๐ , ๐ 1 , ๐ 2 ,๐). Discrete Logarithm Given ๐, ๐ ๐ฅ compute ๐ฅ Computational Diffie-Hellman Given ๐, ๐ ๐ , ๐ ๐ compute ๐ ๐๐ Generalized Diffie-Hellman Exponent Given ๐, ๐ ๐ฅ ,โฆ, ๐ ๐ฅ ๐โ1 , ๐ ๐ฅ ๐+1 ,โฆ, ๐ ๐ฅ 2๐ compute ๐ ๐ฅ ๐ Strong Diffie-Hellman Given ๐, ๐ ๐ฅ ,โฆ, ๐ ๐ฅ ๐ output ๐, ๐ 1 ๐ฅ+๐
4
Non-interactive computational assumptions
Generic group model ? ? ? Computational Diffie-Hellman (CDH) Discrete logarithm (DL)
5
Non-interactive computational assumptions
Generic group model ๐-GDHE & ๐-SFrac Fractional assumptions ๐-GDHE ๐-SFrac Polynomial assumptions Computational Diffie-Hellman (CDH) Discrete logarithm problem (DL)
6
Non-interactive computational assumption
Accept: ๐=1 Reject: ๐=0 PPT instance generator ๐๐ข๐,๐๐๐๐ฃ โ๐ผ 1 ๐ DPT solution verifier ๐โ๐(๐๐ข๐,๐๐๐๐ฃ,๐ ๐๐) Definition The non-interactive computational assumption (๐ผ,๐) holds if for all PPT adversaries ๐ด Pr ๐๐ข๐,๐๐๐๐ฃ โ๐ผ 1 ๐ ;๐ ๐๐โ๐ด(๐๐ข๐) ๐ ๐๐ข๐,๐๐๐๐ฃ,๐ ๐๐ =1 โ0
7
(๐,๐,๐)-target assumption
Say assumption is simple if ๐ ๐ ๐ =0 (๐,๐,๐)-target assumption ๐-variate polynomials of total degree ๐ or less CDH assumption 1 1 , ๐ 1 1 , ๐ โ ๐ผ ๐๐๐๐ ๐บ ๐ ๐๐๐๐ , ๐ 1 1 , ๐ 2 1 , ๐ ๐ ๐ ๐ ,๐ฆ checks ๐( ๐ ) ๐ ( ๐ ) = X 1 X 2 ๐-SDH assumption 1 1 , ๐ 1 ,โฆ, ๐ ๐ 1 โ ๐ผ ๐๐๐๐ ๐บ ๐ ๐๐๐๐ , ๐ 1 ,โฆ, ๐ ๐ 1 , ๐ ๐ ๐ ๐ ,๐ฆ checks ๐( ๐ ) ๐ ( ๐ ) = 1 ๐+๐ Say assumption is univariate if ๐=1 ๐๐ข๐,๐๐๐๐ฃ โ๐ผ 1 ๐ ๐บ,๐ โGen 1 ๐ ๐ 1 ๐ ๐ 1 ( ๐ ) ,โฆ, ๐ ๐ ( ๐ ) ๐ ๐ ( ๐ ) ,๐๐ข ๐ โฒ ,๐๐๐ ๐ฃ โฒ โ ๐ผ ๐๐๐๐ ๐บ ๐ฅ โ ๐ ๐ ๐ (such that all ๐ ๐ ๐ฅ โ 0) ๐๐ข๐= ๐บ, ๐ ๐ 1 ๐ฅ ๐ 1 ๐ฅ ,โฆ, ๐ ๐ ๐ ๐ฅ ๐ ๐ ๐ฅ , ๐ 1 ๐ ๐ 1 ๐ ,โฆ, ๐ ๐ ๐ ๐ ๐ ๐ ,๐๐ข ๐ โฒ ; ๐๐๐๐ฃ=(๐, ๐ฅ ,๐๐๐ ๐ฃ โฒ ) ๐โ๐ ๐๐ข๐,๐๐๐๐ฃ,๐ ๐๐= ๐ ๐ ๐ ๐ ,๐ฆ,๐ ๐ ๐ โฒ Check ๐( ๐ ) ๐ ( ๐ ) โspan ๐ 1 ๐ ๐ 1 ๐ ,โฆ, ๐ ๐ ๐ ๐ ๐ ๐ as formal polynomials Check ๐ฆ= ๐ ๐ ๐ฅ ๐ ๐ฅ and check ๐ ๐๐๐๐ ๐๐ข๐,๐๐๐๐ฃ,๐ ๐๐ =1 Ensures generic adversary cannot break assumption Say assumption is polynomial if ๐ ๐ =1 Say assumption is fractional if ๐ ๐ โซฎ ๐ ๐ Adversaryโs target
8
Hierarchy of target assumptions
GDHE & SFrac Polynomial & Fractional Univariate simple target Simple target assumptions Target assumptions
9
Uber assumptions Generalized Diffie-Hellman Exponent (๐-GDHE)
Given ๐, ๐ ๐ฅ ,โฆ, ๐ ๐ฅ ๐โ1 , ๐ ๐ฅ ๐+1 ,โฆ, ๐ ๐ฅ 2๐ hard to compute ๐ ๐ฅ ๐ Simple Fractional (๐-SFrac) Given ๐, ๐ ๐ฅ ,โฆ, ๐ ๐ฅ ๐ hard to output ๐(๐) ๐ (๐) , ๐ ๐(๐ฅ) ๐ (๐ฅ) with deg ๐ >degโก(๐) The ๐-SDH problem: given (๐, ๐ ๐ฅ ,โฆ, ๐ ๐ฅ ๐ ) output ๐, ๐ 1 ๐ฅ+๐ is a special case of the q-SFrac problem with ๐ ๐ =1 and ๐ ๐ =๐+๐
10
Target assumption hierarchy
โฎ 3-GDHE & 3-SFrac 2-GDHE & 2-SFrac 1-GDHE & 1-SFrac CDH
11
Structural analysis โฎ โฎ 3-GDHE 3-SFrac โ โ 2-GDHE โธ 2-SFrac โ โ 1-GDHE
Gftv#f8HJN FVDXZD\SA โ โ 1-GDHE 1-SFrac โ โ CDH
12
Asymmetric bilinear groups
Bilinear group generator ๐บ 1 , ๐บ 2 , ๐บ ๐ , ๐ 1 , ๐ 2 โBGen( 1 ๐ ) Groups ๐บ 1 , ๐บ 2 , ๐บ ๐ of known prime order ๐ Efficiently computable group operations in ๐บ 1 , ๐บ 2 , ๐บ ๐ Efficiently computable bilinear map ๐: ๐บ 1 ร ๐บ 2 โ ๐บ ๐ ๐ ๐ 1 ๐ , ๐ 2 ๐ =๐ ๐ 1 , ๐ 2 ๐๐ Random generators ๐ 1 , ๐ 2 such that ๐บ 1 = ๐ 1 , ๐บ 2 =โฉ ๐ 2 โช Defining ๐ ๐ =๐( ๐ 1 , ๐ 2 ) we have ๐บ ๐ =โฉ ๐ ๐ โช Asymmetric (type III) setting where ๐บ 1 โ ๐บ 2
13
Bilinear target assumption stratification for ๐ถโ{๐,๐} ๐ถ=๐ป
โฎ โฎ 2-BGDHE & 2-BSFrac 2-BGap & 2-BSFrac 1-BGDHE & 1-BSFrac 1-BGap & 1-BSFrac CDH CDH
14
Open problems Prove or disprove the conjecture ๐-GDHE โ 1-SDH
Find structure in the SFrac assumptions Simplify the ๐-BGap assumptions Tightness Analyze assumptions where the goal is to output set group of elements ๐ฆ 1 ,โฆ, ๐ฆ โ with some relationship to each other Analyze interactive assumptions
15
Conclusions Cryptographers Cryptanalysts
Most non-interactive computational assumptions in use are implied by the GDHE & SFrac assumptions All non-fractional assumptions are implied by GDHE, giving us a โcanary in the coal mineโ barrier Cryptanalysts The GDHE and SFrac assumptions are the easiest targets to attack Do not try to break discrete log, attack the โcanary in the coal mineโ assumptions first
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.