Presentation is loading. Please wait.

Presentation is loading. Please wait.

Antenna Theory Chapter.2.6.1~2.7 Antennas

Similar presentations


Presentation on theme: "Antenna Theory Chapter.2.6.1~2.7 Antennas"β€” Presentation transcript:

1 Antenna Theory Chapter.2.6.1~2.7 Antennas
Min-Beom Ko

2 Contents Antennas & RF Devices Lab.
2.Fundamental Parameters Of Antennas 2.6 Directivity 2.6.1 Directional Patterns -Kraus Equation -Tai and Pereira Equation -Comparison of exact and approximate values 2.6.2 Omnidirectional Patterns -McDonald Equation -Pozar Equation -Comparison of exact and approximate value 2.7 Numerical Techniques Antennas & RF Devices Lab.

3 2.6. Directivity Antennas & RF Devices Lab.
-Short review of directivity -Definition π·π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦= π‘…π‘Žπ‘‘π‘–π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛𝑑𝑒𝑛𝑠𝑖𝑑𝑦 𝑖𝑛 π‘Ž 𝑔𝑖𝑣𝑒𝑛 π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› πΌπ‘ π‘œπ‘‘π‘Ÿπ‘œπ‘π‘–π‘ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛𝑑𝑒𝑛𝑠𝑖𝑑𝑦 Isotropic Radiation Intensity (2-1) -In mathematical form, 𝐷= π‘ˆ π‘ˆ 0 = 4πœ‹π‘ˆ 𝑃 π‘Ÿπ‘Žπ‘‘ π‘Š/𝑒𝑛𝑖𝑑 π‘ π‘œπ‘™π‘–π‘‘ π‘Žπ‘›π‘”π‘™π‘’ π‘Š/𝑒𝑛𝑖𝑑 π‘ π‘œπ‘™π‘–π‘‘ π‘Žπ‘›π‘”π‘™π‘’ =(π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘ ) (2-2) -Partial directivity of antenna 𝐷= 𝐷 πœƒ + 𝐷 πœ™ 𝐷 πœƒ = 4πœ‹ π‘ˆ πœƒ 𝑃 π‘Ÿπ‘Žπ‘‘ πœƒ + 𝑃 π‘Ÿπ‘Žπ‘‘ πœ™ 𝐷 πœ™ = 4πœ‹ π‘ˆ πœ™ 𝑃 π‘Ÿπ‘Žπ‘‘ πœƒ + 𝑃 π‘Ÿπ‘Žπ‘‘ πœ™ (2-3) Figure 2.1 Definition of Directivity. (2-4) (2-5) Antennas & RF Devices Lab.

4 2.6. Directivity -To more general expressions
(2-6) π‘ˆ= 𝐡 0 𝐹 πœƒ,πœ™ β‰… 1 2πœ‚ [ 𝐸 πœƒ 0 (πœƒ,πœ™) 2 + | 𝐸 βˆ… 0 (πœƒ,πœ™)| 2 ] (2-7) π‘ˆ π‘šπ‘Žπ‘₯ = 𝐡 0 𝐹 πœƒ,πœ™ | π‘šπ‘Žπ‘₯ = 𝐡 0 𝐹 πœƒ,πœ™ π‘šπ‘Žπ‘₯ 𝑃 π‘Ÿπ‘Žπ‘‘ = Ξ© π‘ˆ(πœƒ,πœ™) 𝑑Ω= 𝐡 πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ (2-8) 𝐷 πœƒ,πœ™ = 4πœ‹πΉ πœƒ,πœ™ 0 2πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ (2-9) 𝐷 0 = 4πœ‹πΉ πœƒ,πœ™ π‘šπ‘Žπ‘₯ 0 2πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ (2-10) 𝐷 0 = 4πœ‹ 0 2πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ 𝐹 πœƒ,πœ™ | π‘šπ‘Žπ‘₯ = 4Ο€ Ξ© 𝐴 (2-11) Figure 2.2 Normalized three-dimensional amplitude field pattern(in linear scale). Of a 10-element linear array antenna with a uniform spacing d=0.25πœ† and progressive phase shift 𝛽=βˆ’0.6πœ‹ between the elements Antennas & RF Devices Lab.

5 2.6. Directivity -Beam Solid Angle Antennas & RF Devices Lab.
𝐷 0 = 4πœ‹ Ξ© 𝐴 (2-11) Ξ© 𝐴 = 0 2πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ 𝐹 πœƒ,πœ™ | π‘šπ‘Žπ‘₯ (2-12) β€œThe beam solid angle Ξ© 𝐴 is defined as the solid angle through which all the power of the antenna would flow if its radiation intensity is constant(and equal to the maximum value of π‘ˆ) for all angles within Ξ© 𝐴 ” Figure 2.3 Beam solid angle (1) Figure 2.4 Beam solid angle (2) Antennas & RF Devices Lab.

6 2.6.1. Directional Patterns -Kraus Equation Antennas & RF Devices Lab.
β€œFor antennas with one narrow major lobe and very negligible minor lobes, the beam solid angle is approximately equal to the product of the half-power beamwidths in two perpendicular planes.” -The beam solid angle has been approximated by Figure 2.5 Beam solid angle for nonsymmetrical and symmetrical radiation patterns Ξ© 𝐴 = 0 2πœ‹ 0 πœ‹ 𝐹 πœƒ,πœ™ π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™ 𝐹 πœƒ,πœ™ | π‘šπ‘Žπ‘₯ β‰… Θ 1π‘Ÿ Θ 2π‘Ÿ (2-13) ( Θ 1 :π»π‘ƒπ΅π‘Š 𝑖𝑛 π‘œπ‘›π‘’ π‘π‘™π‘Žπ‘›π‘’ , Θ 2 :π»π‘ƒπ΅π‘Š 𝑖𝑛 π‘Ž π‘π‘™π‘Žπ‘›π‘’ π‘Žπ‘‘ π‘Ž π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Žπ‘›π‘”π‘™π‘’ π‘‘π‘œ π‘‘β„Žπ‘’ π‘œπ‘‘β„Žπ‘’π‘Ÿ) -With this approximation, (2-11)can be approximated by 𝐷 0 β‰… 4πœ‹ Θ 1π‘Ÿ Θ 2π‘Ÿ (2-14) -(2-14) can be written as 𝐷 0 β‰… 4πœ‹ 180/πœ‹ 2 Θ 1𝑑 Θ 2𝑑 = 41,253 Θ 1𝑑 Θ 2𝑑 (2-15) -For planar arrays, a better approximation to (2-15) is 𝐷 0 β‰… 32,400 Θ 1𝑑 Θ 2𝑑 (2-16) Antennas & RF Devices Lab.

7 2.6.1. Directional Patterns -Tai & Pereira Equation
β€œThe directivity can be obtained by approximating an arithmetic mean expression of the directivity obtained from the E-plane and the H-plane, respectively.” -The power pattern in two principal planes -The total directivity can be derived from arithmetic-mean of 𝐷 1 and 𝐷 2 | 𝐸 πœƒ (πœƒ,0)| 2 , π‘‘β„Žπ‘’ πΈβˆ’π‘π‘™π‘Žπ‘›π‘’ π‘π‘Žπ‘‘π‘‘π‘’π‘Ÿπ‘› (2-17) 1 𝐷 = 1 2 ( 1 𝐷 𝐷 2 ) (2-22) | 𝐸 πœ™ (πœƒ, πœ‹ 2 )| 2 , π‘‘β„Žπ‘’ π»βˆ’π‘π‘™π‘Žπ‘›π‘’ π‘π‘Žπ‘‘π‘‘π‘’π‘Ÿπ‘› (2-18) -Directivity of an antenna with a rotationally symmetrical pattern | 𝐸 πœƒ (πœƒ,0)| 2 -Finally, directivity can be approximated as follows 𝐷 1 = 𝐸 πœƒ π‘šπ‘Žπ‘₯ πœ‹ | 𝐸 πœƒ (πœƒ,0)| 2 π‘ π‘–π‘›πœƒπ‘‘πœƒ (2-19) 𝐷 0 β‰… 32 ln 2 Θ 1π‘Ÿ 2 + Θ 2π‘Ÿ 2 = Θ 1π‘Ÿ 2 + Θ 2π‘Ÿ 2 (2-23) - Directivity of an antenna with a rotationally symmetrical pattern | 𝐸 πœ™ (πœƒ, πœ‹ 2 )| 2 -(2-23) can be written as 𝐷 2 = 𝐸 πœ™ π‘šπ‘Žπ‘₯ πœ‹ | 𝐸 πœ™ (πœƒ, πœ‹ 2 )| 2 π‘ π‘–π‘›πœƒπ‘‘πœƒ (2-20) 𝐷 0 = 72,815 Θ 1𝑑 2 + Θ 2𝑑 2 (2-24) -Approximate expression for 𝐷 1 and 𝐷 2 in terms of Θ 1π‘Ÿ , Θ 2π‘Ÿ (2-21) 𝐷 1 β‰…16 ln 2 Θ 1π‘Ÿ 2 𝐷 2 β‰…16 ln 2 Θ 2π‘Ÿ 2 ( Θ 1π‘Ÿ :π»π‘ƒπ΅π‘Š π‘œπ‘“ πΈβˆ’π‘π‘™π‘Žπ‘›π‘’ , Θ 2π‘Ÿ :π»π‘ƒπ΅π‘Š π‘œπ‘“ π»βˆ’π‘π‘™π‘Žπ‘›π‘’) Antennas & RF Devices Lab.

8 2.6.1. Comparison of Exact and Approximate Values of 𝐷 0
(2-25) Figure 2.6 Comparison of exact and approximate values of directivity for directional π‘ˆ= π‘π‘œπ‘  𝑛 πœƒ power patterns Table 2.1 Comparison of exact and approximate values of directivity for directional π‘ˆ= π‘π‘œπ‘  𝑛 πœƒ power patterns -The error due to Tai & Pereira’s formula is always negative. -The error due to Tai & Pereira’s formula monotonically decreases as n increases. -The error due to Kraus’s formula is negative for small n and positive for large values of n(=5.497β‰…5.5). -Kraus’s formula leads to small error for n<11.28 while Tai & Pereira’s leads to smaller error for n >11.28. Antennas & RF Devices Lab.

9 2.6.2. Omnidirectional Patterns
-McDonald Equation -The function chosen to approximate the radiation pattern is -The use of this approximation allows the expression for I to be E πœ“ = sin bπœ“ bψ (2-25) (2-31) πΌβ‰ˆ πœ‹ 𝑏 βˆ’ 𝑏 2 (πœ“:measured from the broadside direction, i.e, πœ“=0 is at right angles to the antenna axis.) (b: determines the range associated with the number of minor lobes.(= 159 π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ ) )) -The numerical directivity 𝐷 𝑑 is given by -Thus a combination of b, (2-31), and (2-26) gives (2-26) 𝐷 𝑑 = 𝐼 𝐷 𝑑 β‰… 62 π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )βˆ’ (π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )) 2 (2-32) -Where 𝐼= 0 πœ‹ 2 𝑠𝑖𝑛 2 π‘πœ“π‘π‘œπ‘ πœ“ (π‘πœ“) 2 π‘‘πœ“ (2-27) -If isotropic antenna is selected as the reference antenna -I can be evaluated as 𝐷 0 β‰… 101 π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )βˆ’ (π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )) 2 (2-33) (2-28) 𝐼= 2𝑏+1 4 𝑏 2 𝑆𝑖 𝑏 πœ‹+ 2π‘βˆ’1 4 𝑏 2 𝑆𝑖 π‘βˆ’ 1 2 πœ‹βˆ’ 1 2 𝑏 2 𝑆𝑖( πœ‹ 2 ) -Where (2-29) 𝑆𝑖 π‘₯ = 0 π‘₯ 𝑠𝑖𝑛𝑑 𝑑 𝑑𝑑 𝑆𝑖 πœ‹ 2 =1.37 -Appropriate approximation for the first two sine integrals in(2.28) (2-30) 𝑆𝑖 π‘₯ β‰ˆ πœ‹ 2 βˆ’ π‘π‘œπ‘ π‘₯ π‘₯ (For antennas of moderate or high gain, b is much greater than unity.) Antennas & RF Devices Lab.

10 2.6.2. Omnidirectional Patterns
-Pozar Equation Figure 2.7 Directivity versus elevation-plane half-power beamwidth, for an omnidirectional antenna. The open circles are data computed from the approximate curve-fit equation, given in Equation(2-35) -Omnidirectional patterns can often be approximated by (2-34) π‘ˆ= 𝑠𝑖𝑛 𝑛 πœƒ 0β‰€πœƒβ‰€πœ‹ , 0β‰€πœ™β‰€2πœ‹ -An approximate curve-fit equation to the curve Figure 2.7 is given by (2-35) 𝐷 0 β‰…βˆ’ /π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ ) Antennas & RF Devices Lab.

11 2.6.2. Comparison of Exact and Approximate Values of 𝐷 0
Figure 2.8 Omnidirectional patterns with and without minor lobes. Figure 2.9 Comparison of exact and approximate values of directivity for omnidirectional π‘ˆ= 𝑠𝑖𝑛 𝑛 πœƒ power patterns -Both equations are for omnidirectional pattern antennas. -The McDonald’s approximation should be more accurate for omnidirectional patterns with minor lobes. -The Pozar’s approximation should be more accurate for omnidirectional patterns without minor lobes. -Figure 2.9 can be used for design purposes. Antennas & RF Devices Lab.

12 2.6.2. Comparison of Exact and Approximate Values of 𝐷 0
Problem : Design an antenna with omnidirectional amplitude pattern with a half-power beamwidth of 90 ∘ . Express its radiation intensity by π‘ˆ= 𝑠𝑖𝑛 𝑛 πœƒ. Determine the value of n and attempt to identify elements that such a pattern. Determine the directivity of the antenna. Solution : Since the HPBW is 90 ∘ , The directivity based on McDonald’s Equation is π‘ˆ πœƒ= 45 ∘ =0.5= 𝑠𝑖𝑛 𝑛 45 ∘ = (0.707) 𝑛 𝐷 0 =βˆ’ /90 =1.516=1.807𝑑𝐡 So The directivity based on Pozar’s Equation is 𝐷 0 = βˆ’ (90) 2 =1.4825=1.71𝑑𝐡 𝑛=2 The exact directivity is The error rate of each equation is P rad = 0 2πœ‹ 0 πœ‹ 𝑠𝑖𝑛 2 πœƒπ‘ π‘–π‘›πœƒπ‘‘πœƒπ‘‘πœ™= 8πœ‹ 3 McDonald’s Equation : 1.1% Pozar’s Equation : -1.17% D 0 = 4πœ‹ 8πœ‹/3 = 3 2 =1.761𝑑𝐡 Antennas & RF Devices Lab.

13 2.7. Numerical Techniques. Antennas & RF Devices Lab.
Instead of using approximate expressions of Kraus, Tai and Pereira, McDonald, or Pozar alternate and more accurate techniques may be desirable. -If radiation intensity of a given antenna is separable, -If the integrations in (2-39) cannot be performed analytically, 0 πœ‹ 𝑓 πœƒ π‘ π‘–π‘›πœƒπ‘‘πœƒ= 𝑖=1 𝑁 𝑓 πœƒ 𝑖 𝑠𝑖𝑛 Ξ” πœƒ 𝑖 (2-36) π‘ˆ= 𝐡 0 𝑓 πœƒ 𝑔(πœ™) (2-40) -The directivity for such a system is given by, -For N uniform divisions over the πœ‹ interval, 𝐷 0 = 4πœ‹ π‘ˆ π‘šπ‘Žπ‘₯ 𝑃 π‘Ÿπ‘Žπ‘‘ (2-37) (2-41) Ξ” πœƒ 𝑖 = πœ‹ 𝑁 -Where -When πœƒ 𝑖 is taken at the trailing edge of each division 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 πœ‹ 0 πœ‹ 𝑓 πœƒ 𝑔 πœ™ π‘ π‘–π‘›π‘‘πœƒ π‘‘πœ™ (2-38) (2-42) πœƒ 𝑖 =𝑖 πœ‹ 𝑁 , 𝑖=1,2,3,….,𝑁 -Which can also be written as, -When πœƒ 𝑖 is selected at the middle of each division 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 πœ‹ 𝑔(πœ™) 0 πœ‹ 𝑓 πœƒ π‘ π‘–π‘›π‘‘πœƒ π‘‘πœ™ (2-39) (2-43) πœƒ 𝑖 = πœ‹ 2𝑁 + π‘–βˆ’1 πœ‹ 𝑁 , 𝑖=1,2,3,….,𝑁 Antennas & RF Devices Lab.

14 2.7. Numerical Techniques. 𝐷 0 = 4πœ‹ π‘ˆ π‘šπ‘Žπ‘₯ 𝑃 π‘Ÿπ‘Žπ‘‘
-Directivity is defined by Figure 2.10 Digitization scheme of pattern in spherical coordinates 𝐷 0 = 4πœ‹ π‘ˆ π‘šπ‘Žπ‘₯ 𝑃 π‘Ÿπ‘Žπ‘‘ (2-37) -If πœƒ and πœ™ variations are separable, 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 0 ( πœ‹ 𝑁 )( 2πœ‹ 𝑀 ) 𝑗=1 𝑀 𝑔( πœ™ 𝑗 ) 𝑖=1 𝑁 𝑓 πœƒ 𝑖 sin⁑ πœƒ 𝑖 (2-44) -If πœƒ and πœ™ variations are not separable, 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 0 ( πœ‹ 𝑁 )( 2πœ‹ 𝑀 ) 𝑗=1 𝑀 𝑖=1 𝑁 𝐹 πœƒ 𝑖 , πœ™ 𝑗 𝑠𝑖𝑛 πœƒ 𝑖 (2-45)

15 Summery Reference Antennas & RF Devices Lab. Kraus Tai and Pereira
-An antenna directivity with one narrow major lobe and a negligible small lobe can be approximate as follows. Kraus Tai and Pereira 𝐷 0 β‰… 4πœ‹ Θ 1π‘Ÿ Θ 2π‘Ÿ (2-14) 𝐷 0 β‰… 32 ln 2 Θ 1π‘Ÿ 2 + Θ 2π‘Ÿ 2 = Θ 1π‘Ÿ 2 + Θ 2π‘Ÿ 2 (2-23) -An omnidirectional pattern antenna’s directivity can be approximate as follows. McDonald Pozar 𝐷 0 β‰… 101 π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )βˆ’ (π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ )) 2 (2-33) 𝐷 0 β‰…βˆ’ /π»π‘ƒπ΅π‘Š(π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ ) (2-35) -Numerical techniques. Separable πœƒ,πœ™ Not separable πœƒ,πœ™ 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 0 ( πœ‹ 𝑁 )( 2πœ‹ 𝑀 ) 𝑗=1 𝑀 𝑔( πœ™ 𝑗 ) 𝑖=1 𝑁 𝑓 πœƒ 𝑖 sin⁑ πœƒ 𝑖 (2-44) 𝑃 π‘Ÿπ‘Žπ‘‘ = 𝐡 0 ( πœ‹ 𝑁 )( 2πœ‹ 𝑀 ) 𝑗=1 𝑀 𝑖=1 𝑁 𝐹 πœƒ 𝑖 , πœ™ 𝑗 𝑠𝑖𝑛 πœƒ 𝑖 (2-45) Reference [1] C. A. Balanis, Antenna Theory: Analysis and Design, New York:Wiley, 1982. [2]J. D. Kraus, Antennas, McGraw-Hill, New York, 1988 [3]C.-T. Tai and C. S. Pereira, β€œAn Approximate Formula for Calculating the Directivity of an Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-24, No. 2, pp. 235–236, March 1976 [4]N. A. McDonald, β€œApproximate Relationship Between Directivity and Beamwidth for Broadside Collinear Arrays,” IEEE Trans. Antennas Propagat., Vol. AP-2,No. 2,pp. 340–341, March 1978 [5]D. M. Pozar, β€œDirectivity of Omnidirectional Antennas,” IEEE Antennas Propagat. Mag. Vol. 35, No. 5, pp. 50–51, October 1993. Antennas & RF Devices Lab.

16 Thank You Antennas & RF Devices Lab.


Download ppt "Antenna Theory Chapter.2.6.1~2.7 Antennas"

Similar presentations


Ads by Google