Presentation is loading. Please wait.

Presentation is loading. Please wait.

MEIC Alternative Design Part V

Similar presentations


Presentation on theme: "MEIC Alternative Design Part V"— Presentation transcript:

1 MEIC Alternative Design Part V
Using PEP-II RF Stations (476 MHz) Damping Wiggler Mismatching Beam Spot size at IP MEIC Accelerator R&D Meeting Oct. 30, 2014

2 A New Baseline for MEIC (?!)
Main components Electron collider ring (PEP-II magnets, vacuum, and possibly RF stations) Ion linac (could its energy be lower?) (single!) Booster ring (up to 8 GeV/c, Fermilab cooler, plus a 150 KeV cooler, super-ferric magnets?) Ion collider ring (super-ferric, other existing rings?, imaginary gamma-t, or crossing?) Outstanding issues in the electron ring based on PEP-II magnets Magnets (quad strength, dipole saggitts, good field, vacuum pump) Beam emittance (particularly at 9 GeV and above) Injection scheme and beam loss/background if using PEP-II RF station (over 10 MW)

3 MEIC Luminosity w/ PEP-II RF Station (476 MHz)
Proton 25 GeV 60 GeV 100 GeV 748.5 MHz 476 MHz GeV 1033 /cm2/s 3 0.25 3.8 9.5 9.0 4 7.0 5 3.0 4.5 4.7 6 2.1 3.1 3.3 7 0.24 1.5 2.3 2.4 8 0.14 0.18 0.86 1.2 1.3 1.8 9 0.07 0.10 0.43 0.65 0.64 1.0 10 0.04 0.06 0.22 0.32 0.34 0.53 11 0.02 0.03 0.20 0.19 0.30 12 0.01 0.08 0.11 0.21

4 Damping Wiggler Synchrotron radiation power from the bending magnets and wigglers Wigglers must be placed in the (external) dispersion-free area in order to suppress the quantum fluctuation

5 CLIC Damping

6 A (very primary) Damping Wiggler for MEIC
No wiggler Circumference m 2200 Dipole bending radius 113.5 Lattice deg 135/60 Wiggler period length M 0.05 Wiggler period 600 Total length of wiggler 30 (two?) Magnetic field T 2.5 K 11.7 Energy (GeV) Current (A) Energy loss per turn (MeV) Radiation Power (MW) 3 0.092 0.28 4 0.29 0.87 5 0.71 2.13 6 1.47 4.41 7 2.72 8.17 8 2.23 4.65 10.37 9 1.4 7.45 10.42 10 0.91 11.4 10.33 11 0.63 16.6 10.39 12 0.44 23.5 10.35

7 Electron Current with A Damping Wiggler
Energy (GeV) Current (A) Energy loss per turn (MeV) Radiation Power (MW) Energy loss over wiggler (MeV) Total Rad. power (MW) 3 0.092 0.28 1.07 3.20 3.48 4 0.29 0.87 1.90 5.70 6.57 5 2.8 (3) 0.71 2.00 2.97 8.31 10.30 6 1.8 (3) 1.47 2.65 4.27 7.69 10.34 7 1.23 (3) 2.72 3.35 5.82 7.15 10.51 8 0.84 (2.23) 4.65 3.91 7.60 6.38 10.29 9 0.61 (1.4) 7.45 4.55 9.62 5.86 10.41 10 0.45 (0.91) 11.4 5.1 11.87 5.34 10.45 11 0.33 (0.63) 16.6 5.49 14.36 4.74 10.23 12 0.26 (0.44) 23.5 6.00 17.09 4.36 10.37

8 Electron Beam Emittance with A Damping Wiggler
Energy (GeV) Horizontal emittance without wiggler Horizontal emittance with wiggler Emittance reduction factor mm mrad 3 14.7 1.07 0.07 4 34.8 3.54 0.1 5 68 9.81 0.14 6 117.5 22.7 0.19 7 186.6 45.6 0.24 8 82.6 0.3 9 396.6 137.8 0.35 10 544.0 215.7 0.4 11 724.1 320.6 0.44 12 940.0 456.8 0.49

9 MEIC Luminosity wo/w Wiggler (proton 25 GeV)
750 MHz, no wiggler 476 MHz, with wiggler Energy Normalized emittance (x) Luminosity GeV mm mrad 1033 /cm2/s 3 14.7 0.25 1.07 4 34.8 3.54 5 68,0 9.81 6 117.5 22.7 0.21 7 186.6 0.24 45.6 8 278.5 0.14 0.18 82.6 0.13 9 396.6 0.07 0.10 137.8 0.08 10 544.0 0.04 0.06 215.7 11 724.1 0.02 0.03 320.6 12 940.0 0.01 456.8

10 MEIC Luminosity WO/W Wiggler (proton 60 GeV)
750 MHz, no wiggler 476 MHz, with wiggler Energy (GeV) Normalized emittance (x) Luminosity mm mrad 1033 /cm2/s 3 14.7 3.8 1.07 0.36 4 34.8 3.54 1.3 5 68,0 3.0 9.81 6 117.5 2.1 22.7 3.4 7 186.6 1.5 45.6 2.3 8 278.5 0.86 1.2 82.6 1.6 9 396.6 0.43 0.65 137.8 0.81 10 544.0 0.22 0.32 215.7 0.40 11 724.1 0.20 0.18 320.6 12 940.0 0.08 0.11 456.8 0.13

11 MEIC Luminosity WO/W Wiggler (proton 100 GeV)
750 MHz, no wiggler 476 MHz, no wiggler 476 MHz, with wiggler Energy (GeV) Normalized emittance (x) Luminosity mm mrad 1033 /cm2/s 3 14.7 9.5 9.0 1.07 0.6 4 34.8 7.0 3.54 2.0 5 68,0 4.5 4.7 9.81 6.0 6 117.5 3.1 3.3 22.7 8.9 7 186.6 2.3 2.4 45.6 6.1 8 278.5 1.3 1.8 82.6 6.2 9 396.6 0.64 1.0 137.8 10 544.0 0.34 0.53 215.7 0.67 11 724.1 0.19 0.30 320.6 0.36 12 940.0 0.14 0.21 456.8

12 Beam-Beam and Spot Size Matching at IP
The conventional wisdom is to match the spot sizes of the colliding beam for optimization of beam-beam effect Otherwise, the “fatter” beam is not happy due to sampling more nonlinear beam-beam effect while the “thinner” beam is more stable. These are all for strong-strong beam-beam cases while the parameters for both beams are closed to the beam-beam limits One idea I am proposing is, in a strong-weak case, the “weak” beam whose beam-beam parameters are much smaller than the beam-beam limit, can be a “fatter” beam In that case, we purposely over-focus the strong beam without matching it to the weak beam spot size, thus gains some additional luminosity

13


Download ppt "MEIC Alternative Design Part V"

Similar presentations


Ads by Google