Download presentation
Presentation is loading. Please wait.
1
MEIC Alternative Design Part V
Using PEP-II RF Stations (476 MHz) Damping Wiggler Mismatching Beam Spot size at IP MEIC Accelerator R&D Meeting Oct. 30, 2014
2
A New Baseline for MEIC (?!)
Main components Electron collider ring (PEP-II magnets, vacuum, and possibly RF stations) Ion linac (could its energy be lower?) (single!) Booster ring (up to 8 GeV/c, Fermilab cooler, plus a 150 KeV cooler, super-ferric magnets?) Ion collider ring (super-ferric, other existing rings?, imaginary gamma-t, or crossing?) Outstanding issues in the electron ring based on PEP-II magnets Magnets (quad strength, dipole saggitts, good field, vacuum pump) Beam emittance (particularly at 9 GeV and above) Injection scheme and beam loss/background if using PEP-II RF station (over 10 MW)
3
MEIC Luminosity w/ PEP-II RF Station (476 MHz)
Proton 25 GeV 60 GeV 100 GeV 748.5 MHz 476 MHz GeV 1033 /cm2/s 3 0.25 3.8 9.5 9.0 4 7.0 5 3.0 4.5 4.7 6 2.1 3.1 3.3 7 0.24 1.5 2.3 2.4 8 0.14 0.18 0.86 1.2 1.3 1.8 9 0.07 0.10 0.43 0.65 0.64 1.0 10 0.04 0.06 0.22 0.32 0.34 0.53 11 0.02 0.03 0.20 0.19 0.30 12 0.01 0.08 0.11 0.21
4
Damping Wiggler Synchrotron radiation power from the bending magnets and wigglers Wigglers must be placed in the (external) dispersion-free area in order to suppress the quantum fluctuation
5
CLIC Damping
6
A (very primary) Damping Wiggler for MEIC
No wiggler Circumference m 2200 Dipole bending radius 113.5 Lattice deg 135/60 Wiggler period length M 0.05 Wiggler period 600 Total length of wiggler 30 (two?) Magnetic field T 2.5 K 11.7 Energy (GeV) Current (A) Energy loss per turn (MeV) Radiation Power (MW) 3 0.092 0.28 4 0.29 0.87 5 0.71 2.13 6 1.47 4.41 7 2.72 8.17 8 2.23 4.65 10.37 9 1.4 7.45 10.42 10 0.91 11.4 10.33 11 0.63 16.6 10.39 12 0.44 23.5 10.35
7
Electron Current with A Damping Wiggler
Energy (GeV) Current (A) Energy loss per turn (MeV) Radiation Power (MW) Energy loss over wiggler (MeV) Total Rad. power (MW) 3 0.092 0.28 1.07 3.20 3.48 4 0.29 0.87 1.90 5.70 6.57 5 2.8 (3) 0.71 2.00 2.97 8.31 10.30 6 1.8 (3) 1.47 2.65 4.27 7.69 10.34 7 1.23 (3) 2.72 3.35 5.82 7.15 10.51 8 0.84 (2.23) 4.65 3.91 7.60 6.38 10.29 9 0.61 (1.4) 7.45 4.55 9.62 5.86 10.41 10 0.45 (0.91) 11.4 5.1 11.87 5.34 10.45 11 0.33 (0.63) 16.6 5.49 14.36 4.74 10.23 12 0.26 (0.44) 23.5 6.00 17.09 4.36 10.37
8
Electron Beam Emittance with A Damping Wiggler
Energy (GeV) Horizontal emittance without wiggler Horizontal emittance with wiggler Emittance reduction factor mm mrad 3 14.7 1.07 0.07 4 34.8 3.54 0.1 5 68 9.81 0.14 6 117.5 22.7 0.19 7 186.6 45.6 0.24 8 82.6 0.3 9 396.6 137.8 0.35 10 544.0 215.7 0.4 11 724.1 320.6 0.44 12 940.0 456.8 0.49
9
MEIC Luminosity wo/w Wiggler (proton 25 GeV)
750 MHz, no wiggler 476 MHz, with wiggler Energy Normalized emittance (x) Luminosity GeV mm mrad 1033 /cm2/s 3 14.7 0.25 1.07 4 34.8 3.54 5 68,0 9.81 6 117.5 22.7 0.21 7 186.6 0.24 45.6 8 278.5 0.14 0.18 82.6 0.13 9 396.6 0.07 0.10 137.8 0.08 10 544.0 0.04 0.06 215.7 11 724.1 0.02 0.03 320.6 12 940.0 0.01 456.8
10
MEIC Luminosity WO/W Wiggler (proton 60 GeV)
750 MHz, no wiggler 476 MHz, with wiggler Energy (GeV) Normalized emittance (x) Luminosity mm mrad 1033 /cm2/s 3 14.7 3.8 1.07 0.36 4 34.8 3.54 1.3 5 68,0 3.0 9.81 6 117.5 2.1 22.7 3.4 7 186.6 1.5 45.6 2.3 8 278.5 0.86 1.2 82.6 1.6 9 396.6 0.43 0.65 137.8 0.81 10 544.0 0.22 0.32 215.7 0.40 11 724.1 0.20 0.18 320.6 12 940.0 0.08 0.11 456.8 0.13
11
MEIC Luminosity WO/W Wiggler (proton 100 GeV)
750 MHz, no wiggler 476 MHz, no wiggler 476 MHz, with wiggler Energy (GeV) Normalized emittance (x) Luminosity mm mrad 1033 /cm2/s 3 14.7 9.5 9.0 1.07 0.6 4 34.8 7.0 3.54 2.0 5 68,0 4.5 4.7 9.81 6.0 6 117.5 3.1 3.3 22.7 8.9 7 186.6 2.3 2.4 45.6 6.1 8 278.5 1.3 1.8 82.6 6.2 9 396.6 0.64 1.0 137.8 10 544.0 0.34 0.53 215.7 0.67 11 724.1 0.19 0.30 320.6 0.36 12 940.0 0.14 0.21 456.8
12
Beam-Beam and Spot Size Matching at IP
The conventional wisdom is to match the spot sizes of the colliding beam for optimization of beam-beam effect Otherwise, the “fatter” beam is not happy due to sampling more nonlinear beam-beam effect while the “thinner” beam is more stable. These are all for strong-strong beam-beam cases while the parameters for both beams are closed to the beam-beam limits One idea I am proposing is, in a strong-weak case, the “weak” beam whose beam-beam parameters are much smaller than the beam-beam limit, can be a “fatter” beam In that case, we purposely over-focus the strong beam without matching it to the weak beam spot size, thus gains some additional luminosity
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.