Presentation is loading. Please wait.

Presentation is loading. Please wait.

A Link Layer Protocol for Quantum Networks

Similar presentations


Presentation on theme: "A Link Layer Protocol for Quantum Networks"— Presentation transcript:

1 A Link Layer Protocol for Quantum Networks
Axel Dahlberg, Matt Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpędek, Matteo Pompili, Arian Stolk, Przemysław Pawełczak, Robert Knegjens, Julio de Oliveira Filho, Ronald Hanson, Stephanie Wehner ACM SIGCOMM 2019 – Wednesday 08/21/2019

2 Joint work with Axel Dahlberg Tim Coopmans Leon Wubben Filip Rozpędek
Matteo Pompili Arian Stolk Przemysław Pawełczak Rob Knegjens Julio de Oliveira Filho Ronald Hanson Stephanie Wehner

3 Quantum Information Classical Quantum 1 0+1

4 Applications Quantum Key Distribution Clock Synchronization
Bennett and Brassard. Theor. Comput. Sci (2014): 1984 Ekert. Physical review letters 67.6 (1991): Clock Synchronization Gottesman, Jennewein, and Croke. Physical Review Letters (2012) Secure Quantum Computing in the Cloud Fitzsimons and Kashefi. Physical Review A 96.1 (2017). 2017

5 Quantum Network Structure
End Node Bridge long distances Repeater Prepare/Measure Qubits Store/Manipulate Qubits

6 Stages of Quantum Networks
Functionality Quantum Computing Networks Cryptography Sensing and Metrology Distributed Systems Secure Quantum Cloud Computing Fault-Tolerant Few Qubit Networks Quantum Memory Networks Entanglement Distribution Networks Prepare and Measure Networks Trusted Repeater Networks Time Wehner, Elkouss, and Hanson. Science 362, 6412 (oct)

7 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

8 Related Work Entanglement generation experiments QKD networks
Hensen et al. Nature 526, 7575 (2015), Hofmann et al. Science 337, 6090 (2012), QKD networks Liu et al. ACM SIGCOMM Computer Communication Review. Vol. 43. No Yu et al. IEEE International Conference on Computer and Communications. IEEE, 2017 Network stack sketches Aparicio et al. Asian Internet Engineering Conference. ACM, 2011 Pirker and Dür. New Journal of Physics

9 Why a Quantum Network Stack is Different
No copying! Short lifetime! Inherently connected!

10 Sending Qubits via Entanglement
End node End node

11 Sending Qubits via Entanglement
End node End node

12 Sending Qubits via Entanglement
End node End node

13 Quantum Repeater… Entanglement Swapping
End node Repeater End node

14 Quantum Repeater… Entanglement Swapping
End node Repeater End node

15 Quantum Repeater… Entanglement Swapping
End node Repeater End node

16 Example of Quantum Hardware
Nitrogen vacancy in diamond Communication qubit Storage qubits Entanglement at 1.3 km 10 mm

17 Physical Entanglement Generation

18 How Entanglement is Produced

19 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

20 Quantum Network Stack Application Transport Network Link Physical

21 Quantum Network Stack Application Transport Network Link Physical
Quantum Application Protocols Transport End-to-end Qubit Delivery Network Long-distance Entanglement Generation Link Entanglement Generation on a Link Physical Quantum Device Layer

22 Quantum Network Stack Application Transport Network Link Physical
Quantum Application Protocols Transport End-to-end Qubit Delivery Network Long-distance Entanglement Generation Link Entanglement Generation on a Link Physical Quantum Device Layer

23 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

24 Link Layer: Entanglement Generation Service
CREATE OK, … OK, … QEGP QEGP

25 Performance Metrics Quantum Metrics
Fidelity: quality of entanglement, rate of success trade-off Standard Metrics Latency: issuing request to getting a pair Throughput: pairs/s Fairness: difference in performance metrics between nodes

26 Use Cases Application Use Cases
Measure directly: many pairs measured immediately Create and keep: few pair(s) stored for processing Network Layer Use Case Create and keep: entanglement swapping with two pairs

27 Design Considerations
Noise due to attempts Producing entanglement induces noise on storage qubits (Kalb et al, Phys. Rev. A, ) Avoid triggering unless both nodes agree Noise is time dependent Avoid waiting once entanglement made Prior discussion preferred Quantum CRC for error detection difficult Applications do not require perfect entanglement Reduce complexity

28 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

29 CREATE: Expected Service
Node A Node B QEGP QEGP Link Layer Physical Layer Higher layer to QEGP Remote node ID, # pairs, min fidelity, max time, request type, ...

30 OK: Expected Service QEGP to higher layer
Node A Node B QEGP QEGP Link Layer Physical Layer QEGP to higher layer Entanglement ID, qubit ID, fidelity estimate, ...

31 A Link Layer Protocol

32 A Link Layer Protocol

33 A Link Layer Protocol

34 A Link Layer Protocol

35 A Link Layer Protocol

36 A Link Layer Protocol

37 A Link Layer Protocol

38 A Link Layer Protocol

39 A Link Layer Protocol

40 A Link Layer Protocol

41 A Link Layer Protocol

42 A Link Layer Protocol

43 A Link Layer Protocol

44 A Link Layer Protocol ?

45 How to Prioritize CREATE Requests
Requires context and information Simple version: first come first serve More interesting: cater to different use cases

46 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

47 Simulation Tool: NetSQUID
Discrete event simulator Model and validate simulated quantum hardware Model physical components e.g. fibers, nodes, and midpoint

48 Simulation Environment: SurfSARA
Long runs Protocol robustness: recovery mechanisms Short runs Performance trade-offs: latency, throughput and fidelity Metric fluctuations: different scheduling strategies Simulations Core hours Simulated time Scenarios 2578 94244 707 hours 173

49 Simulation Example: QL2020
KPN PB400 node location 15km KPN PBX detector location Assumed loss 0.1 dB/splice 0.3 dB/km 10km TU Delft node location

50 Evaluation: Quantum Hardware Model
Simulate experiments Fidelity vs rate of success Qubit memory lifetimes

51 Evaluation: Single Request Types
Parameters Takeaways Robust against extreme channel loss Fidelity primarily impacts latency and throughput Request frequency 0.9 Fidelity >0.5 Control message loss probability Up to 10^-4

52 Some Takeaways Protocol robust Fidelity versus throughput and latency
Mixed request simulations Scheduling versus performance metrics

53 Our Contribution Functional allocation of quantum network stack
Systematic study of design considerations and use cases First physical and link layer protocols Performance evaluation and scheduling investigation

54 Future Work Hardware realization of Link Layer (ongoing)
Network Layer Protocol Other (smarter) scheduling strategies Combat memory lifetimes Consider role of node in network

55 Thank you


Download ppt "A Link Layer Protocol for Quantum Networks"

Similar presentations


Ads by Google