Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 9. Day 4..

Similar presentations


Presentation on theme: "Unit 9. Day 4.."β€” Presentation transcript:

1 Unit 9. Day 4.

2 So far we’ve noticed this pattern:
Scale factor: 2 10 m 10 m 5 m 5 m 4 m 4 m 2 m 2 m 40 π‘š 2 40 π‘š 2 10 π‘š 2 10 π‘š 2 14 m 28 m 2 1 2 1 2 1 4 1

3 You will tackle some (in my opinion) challenging problems that use this idea:
4 3 Scale factor: Side Area Original Scale Drawing 4 3 16 9 Groups of 4

4 Example A:Based on the drawing below, what will the area of the planned half-court be?
Scale Drawing: 1 in. on the drawing corresponds to 15 ft. of actual length 10 π‘šπ‘–π‘›π‘’π‘‘π‘’π‘ 

5 Example A:Based on the drawing below, what will the area of the planned half-court be?
Scale Drawing: 1 in. on the drawing corresponds to 15 ft. of actual length 2 1 𝑖𝑛 5 3 𝑖𝑛 2 𝐴= 15 𝑓𝑑 1 𝑖𝑛 π‘™π‘’π‘›π‘‘β„Ž 2 𝑖𝑛 π‘€π‘–π‘‘π‘‘β„Ž π‘†π‘π‘Žπ‘™π‘’ ( ): π‘Žπ‘Ÿπ‘’π‘Ž 𝑠𝑖𝑑𝑒 10 3 𝐴= 𝑖𝑛 2 225 𝑓𝑑 𝑖𝑛 2 π‘†π‘π‘Žπ‘™π‘’ (π‘Žπ‘Ÿπ‘’π‘Ž): 10 3 225 𝑓𝑑 𝑖𝑛 2 𝐴= βˆ™ 𝑖𝑛 2 2250 𝑓𝑑 2 𝐴= 750 3

6 Example A:Based on the drawing below, what will the area of the planned half-court be?
Scale Drawing: 1 in. on the drawing corresponds to 15 ft. of actual length = 15 𝑓𝑑 π‘₯ 𝑓𝑑 𝐴= 30 𝑓𝑑 π‘™π‘’π‘›π‘‘β„Ž 25 𝑓𝑑 π‘€π‘–π‘‘π‘‘β„Ž 1 𝑖𝑛 2 𝑖𝑛 𝐴= 750 𝑓𝑑 2 1π‘₯ = 30 𝑓𝑑 30 15 𝑓𝑑 = π‘₯ 𝑓𝑑 1 𝑖𝑛 5 3 𝑖𝑛 1π‘₯ = 25 𝑓𝑑 25

7 Example B: The triangle depicted by the drawing has an actual area of 36 square units. What is the scale of the drawing? (Note: Each square on the grid has a length of 1 unit.) 10 π‘šπ‘–π‘›π‘’π‘‘π‘’π‘ 

8 Example B: The triangle depicted by the drawing has an actual area of 36 square units. What is the scale of the drawing? (Note: Each square on the grid has a length of 1 unit.) 6 1 2 Scale factor: 𝐴= 6 3 π‘π‘Žπ‘ π‘’ β„Žπ‘’π‘–π‘”β„Žπ‘‘ 𝐴= 18 2 =9 π΄π‘Ÿπ‘’π‘Ž 𝑆𝑖𝑑𝑒 3 π‘ π‘π‘Žπ‘™π‘’ π‘‘π‘Ÿπ‘Žπ‘€π‘–π‘›π‘” π‘Žπ‘π‘‘π‘’π‘Žπ‘™ : 9 36 1 2 3 6 6

9 N/A Scale Factor 16 6 ? 48 𝑒𝑛𝑖𝑑𝑠 2 28 10 ? 140 𝑒𝑛𝑖𝑑𝑠 2 π‘ π‘šπ‘Žπ‘™π‘™ π‘™π‘Žπ‘Ÿπ‘”π‘’ =
Base Height Perimeter Area Small Large Scale Factor 16 6 ? 48 𝑒𝑛𝑖𝑑𝑠 2 28 10 ? 140 𝑒𝑛𝑖𝑑𝑠 2 N/A π‘ π‘šπ‘Žπ‘™π‘™ π‘™π‘Žπ‘Ÿπ‘”π‘’ = 4 7 3 5 48 140 ? ? 24 70 12 35 10 6 16 28 Example C:


Download ppt "Unit 9. Day 4.."

Similar presentations


Ads by Google