Download presentation
Presentation is loading. Please wait.
1
Operating System Reliability
Andy Wang COP 5611 Advanced Operating Systems
2
Some Axioms Some simple systems, designed from scratch, sometimes work
A complex system that works is invariably found to have evolved from a simple system that works A complex system, designed from scratch never works
3
Failure-Mode Theorems
Complex systems usually operate in failure mode A system should have safe behaviors when encountering failures When a “fail-safe” system fails, it fails by failing to fail safe
4
Some definitions Failure occurs when the system does not perform its services in the manner specified Failures can be subtle (e.g., performance fault) Fault is anomalous physical condition Includes system specification/implementation mistakes Error is part of system state that differs from its intended value
5
Classification of Failures
Process failures System failures Secondary storage failures Communication medium failures
6
Process Failures Examples Errors leading to failure
Computation results in incorrect outcome System state deviates from specification Process fails to progress Errors leading to failure Deadlock, timeout, protection violation Bad input, consistency violation Ignoring malicious behavior
7
System Failures Processor fails to execute Fail-stop behavior assumed
Software error, hardware error (CPU, bus, etc.) Fail-stop behavior assumed Failure types Amnesia Partial-amnesia Pause Halting
8
Secondary Storage Failures
Stored data inaccessible Parity error Head crash Contaminated medium Reconstructable from archive + log, maybe Mirrored disks (independent failure mode)
9
Communication Medium Failures
Site can’t communicate with another site Causes Switching node failure Hardware failure Software failure Congestion Link failure Hardware Implementation failure Network partitions can result
10
Recovery Restart process/processor Reclaim resources
Undo/finish incomplete transactions Concurrency makes things harder
11
Forward Error Recovery
Goal: To restore system from erroneous state to error-free state If nature of error is completely known Remove error from state Proceed with execution from error-free state Rarely possible to do
12
Backward Error Recovery
When error source unknown Restore state to previous error-free state; restart Independent of fault, errors causing fault Problems Performance penalty No guarantee fault will not reoccur Possible unrecoverable component of state Recovery point: state used to replace error
13
Backward Error Recovery
Basic approaches Operation-based Logs Update-in-place Write-ahead-log State-based
14
Update-in-Place Every update to object also records the log
Name of object Old and new states of object Recoverable update operation implements as Do, undo, redo operations
15
Write-ahead Log Update-in-place has problem if crash occurs between update and log recorded to stable storage Update object only after undo log recorded Before committing updates, record both redo and undo logs Expensive to write log to stable storage
16
State-Based Recovery Save entire process state at recovery point
Recovery point called checkpoint Rolling back process: restoring to checkpoint Tradeoff: frequent checkpoints vs. completion delay Shadow pages Save unmodified page copy on stable storage Update only volatile copy; discard on rollback
17
Concurrent Systems Recovery
Rollback issues Orphan messages Domino effect Lost messages Livelocks
18
Orphan Messages (a message prior to a checkpoint is sent to the future)
x1 x2 X [ [ y m y2 Y [ [ z1 z2 Z [ [ [ recovery point
19
Domino Effect Suppose Y rolls back to y2 Suppose Z rolls back to z2
m is orphan message Process Y must rollback to y1 Suppose Z rolls back to z2 Y rolls back to y1 Now a message from future is sent to the past prior to a checkpoint Forcing Z to roll back to z1
20
Lost Messages x1 X [ m z1 Z [ failure [ recovery point
21
Live Locks x1 X [ z1 Z [ repeated failure [ recovery point
22
Concurrent Recovery Coordination required at either time of establishing checkpoints Beginning of recovery
23
Checkpoint Assumptions
Communication via messages Unreliable FIFO channels Higher-level end-to-end protocols assumed Subsumes rollback-caused message loss No network partitions from communication failures
24
Checkpoint Algorithm Concepts
Permanent and tentative checkpoints Saved on stable storage Permanent: part of known consistent global checkpoint Tentative: until successful termination of checkpoint algorithm Rolls back only to permanent checkpoints
25
Synchronous Checkpoint Algorithms
Two-phase commit Problems: Message overhead for synchronizations Synchronization delays Costly when failures are rare
26
Asynchronous Checkpointing
Local checkpoints taken independently Log all incoming messages on stable storage Minimizes undone computation Allows reprocessing of messages after rollback
27
Asynchronous Checkpointing Assumptions
Reliable FIFO communication channels Infinite buffers Event-driven computation A process idle until message received Processes message and change state Sends zero or more messages Can identify each event with monotonically increasing counter
28
Event-Driven Computation
x1 x2 X y1 y2 Y z1 z2 Z
29
Asynchronous Checkpointing
Basic idea Save states, messages sent at each event Volatile logging Each processor notes number of messages sent to others, and received from others Use counters to determine orphan messages
30
Summary Failures caused by errors
Can remove errors by forward/backward error recovery Backward error-recovery more costly, more general Synchronous checkpoints helpful, costly Asynchronous checkpoints messier, domino effects
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.