Presentation is loading. Please wait.

Presentation is loading. Please wait.

Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network Woojae Kim1, Jongyoo Kim2, Sewoong Ahn1,Jinwoo.

Similar presentations


Presentation on theme: "Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network Woojae Kim1, Jongyoo Kim2, Sewoong Ahn1,Jinwoo."— Presentation transcript:

1 Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network Woojae Kim1, Jongyoo Kim2, Sewoong Ahn1,Jinwoo Kim1, and Sanghoon Lee1 1Department of Electrical and Electronic Engineering, Yonsei University 2Microsoft Research, Beijing, China 2019/10/26 Yuwen Li

2 Motivations Temporal motion effect: i)temporal masking effect;
ii)a severe error in the motion map makes spatial errors more visible to humans 2019/10/26 Yuwen Li

3 Motivations Temporal memory for quality judgment 2019/10/26 Yuwen Li

4 Contributions A Deep Video Quality Assessor (DeepVQA) to predict the spatio- temporal sensitivity map A Convolutional Neural Aggregation Network (CHAN) borrowing an idea from an 'attention mechanism' 2019/10/26 Yuwen Li

5 Related Works Spatio-temporal Visual Sensitivity:
i)A spatio temporal contrast sensitivity function (CSF) ii)A natural video statistics (NVS) theory iii)Existing attempts using deep learning failed to consider motion properties. Temporal Pooling: i)Average pooling ii)Adaptively pool the temporal scores from the HVS perspective iii)'Neural Aggregation Network for Video Face Recognition' (CVPR2017) 2019/10/26 Yuwen Li

6 Framework 2019/10/26 Yuwen Li

7 Framework-Step 1 Input: Distorted frame:
normalized after subtracting the lowpass filtered frames Spatial Error map: 2019/10/26 Yuwen Li

8 Framework-Step 1 Input: Frame Difference map: Temporal Error map:
2019/10/26 Yuwen Li

9 Framework-Step 1 Intermediate output: Spatio-temporal Sensitivity map:
2019/10/26 Yuwen Li

10 Framework-Step 1 Intermediate output: Perceptual Error map: 2019/10/26
Yuwen Li

11 Framework-Step 1 2019/10/26 Yuwen Li

12 Framework-Step 2 2019/10/26 Yuwen Li

13 Experiments 2019/10/26 Yuwen Li

14 Experiments 2019/10/26 Yuwen Li

15 Experiments 2019/10/26 Yuwen Li

16 Experiments 2019/10/26 Yuwen Li

17 Experiments 2019/10/26 Yuwen Li

18 Experiments 2019/10/26 Yuwen Li

19 Experiments 2019/10/26 Yuwen Li

20 Conclusion +How to tell a good story
-Act like an integration of their previous work -Generalization ability -Hard to transform to NR-VQA 2019/10/26 Yuwen Li

21 References Yang, J., Ren, P., Zhang, D., Chen, D., Wen, F., Li, H., Hua, G., Yang, J., Li, H.,Dai, Y., et al.: Neural aggregation network for video face recognition. In: Proc.IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR). 2492–2495 Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR).(2017) 2019/10/26 Yuwen Li


Download ppt "Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network Woojae Kim1, Jongyoo Kim2, Sewoong Ahn1,Jinwoo."

Similar presentations


Ads by Google