Presentation is loading. Please wait.

Presentation is loading. Please wait.

When can we use the Sine Law?

Similar presentations


Presentation on theme: "When can we use the Sine Law?"β€” Presentation transcript:

1 When can we use the Sine Law?
B A a C c b SINE LAW : π‘Ž 𝑠𝑖𝑛𝐴 = 𝑏 𝑠𝑖𝑛𝐡 = 𝑐 𝑠𝑖𝑛𝐢 So if we knew Angles A and B and side c our calculations would be: Case 1: Two Angles & a Side ( AAS) solve for the 3rd unknown angle using the fact that the 3 angles add to 180o Use 2 ratios of the Sine Law to solve for one of the two unknown sides Use 2 ratios of the Sine Law to solve for the last unknown side 𝐢= 180 π‘œ βˆ’π΄βˆ’π΅ π‘Ž 𝑠𝑖𝑛𝐴 = 𝑐 𝑠𝑖𝑛𝐢 β‡’π‘Ž= 𝑐(𝑠𝑖𝑛𝐴) 𝑠𝑖𝑛𝐢 𝑏 𝑠𝑖𝑛𝐡 = 𝑐 𝑠𝑖𝑛𝐢 ⇒𝑏= 𝑐(𝑠𝑖𝑛𝐡) 𝑠𝑖𝑛𝐢 Washington/Evans Basic Technical Mathematics 11e -- Copyright Β© 2018 Pearson Inc.

2 When can we use the Sine Law?
B b c SINE LAW : π‘Ž 𝑠𝑖𝑛𝐴 = 𝑏 𝑠𝑖𝑛𝐡 = 𝑐 𝑠𝑖𝑛𝐢 Case 2: Two Sides & Angle Opposite a Side ( SSAopp) solve for the unknown angle opposite the known side solve for the last unknown angle using the fact that the 3 angles add to 180o Use 2 ratios of the Sine Law to solve for the last unknown sides So if we knew Angle A and sides a and b our calculations would be: π‘Ž 𝑠𝑖𝑛𝐴 = 𝑏 𝑠𝑖𝑛𝐡 ⇒𝑠𝑖𝑛𝐡= 𝑏(𝑠𝑖𝑛𝐴) π‘Ž 𝐢= 180 π‘œ βˆ’π΄βˆ’π΅ π‘Ž 𝑠𝑖𝑛𝐴 = 𝑐 𝑠𝑖𝑛𝐢 ⇒𝑐= π‘Ž(𝑠𝑖𝑛𝐢) 𝑠𝑖𝑛𝐴 Washington/Evans Basic Technical Mathematics 11e -- Copyright Β© 2018 Pearson Inc.

3 Case 2 – possible solutions
SINE LAW : π‘Ž 𝑠𝑖𝑛𝐴 = 𝑏 𝑠𝑖𝑛𝐡 = 𝑐 𝑠𝑖𝑛𝐢 Case 2: Two Sides & Angle Opposite a Side ( SSAopp) we could get the following solutions: No solution if π‘Ž<𝑏(𝑠𝑖𝑛𝐴) a b A A a b A right triangle solution if π‘Ž=𝑏 𝑠𝑖𝑛𝐴 Called Ambiguous Case a b A B C a b A C’ B’ a b A Two solutions if 𝑏(𝑠𝑖𝑛𝐴)<π‘Ž<𝑏 One solution if π‘Ž>𝑏(𝑠𝑖𝑛𝐴) Washington/Evans Basic Technical Mathematics 11e -- Copyright Β© 2018 Pearson Inc.


Download ppt "When can we use the Sine Law?"

Similar presentations


Ads by Google