Download presentation
Presentation is loading. Please wait.
1
PIT Questions in Invariant Theory
Rafael Oliveira University of Toronto PIT Questions in Invariant Theory
2
1 Outline Geom. Inv. Theory Inv. Theory and PIT Examples & Results
Future Work
3
Invariant Theory - Basics
Let ๐ฝ be a vector space and ๐ฎ be a group acting (linearly) on it ๐= โ ๐ and ๐บ= ๐ ๐ permutes coordinates ๐=๐๐ ๐ก ๐ (โ) and ๐บ=๐๐ฟ ๐ ร๐๐ฟ(๐) acts mult. on left-right An invariant polynomial is a polynomial which doesnโt change by action of ๐บ ๐ ๐โ
๐ฅ =๐ ๐ฅ , โ ๐โ๐บ ๐= โ ๐ and ๐บ= ๐ ๐ invariants gen. by symmetric polynomials ๐=๐๐ ๐ก ๐ (โ) and ๐บ=๐๐ฟ ๐ ร๐๐ฟ(๐) gen. by determinant Given ๐ฃโ๐, its orbit is the set ๐ช ๐ฃ โ{๐โ
๐ฃโฃ๐โ๐บ} And the closure ๐ช ๐ฃ is the orbit with its limit points. (Also, zero set of all polynomials vanishing on Gโ
๐ฃ).
4
Basic Questions Given vector space ๐ฝand group ๐ฎ acting (linearly) on it Compute generators to invariant polynomials Find relations among generators (a.k.a. syzygies) Many more Orbit Closure Intersection (OCI): given ๐ฃ, ๐คโ๐, is ๐ช ๐ฃ โฉ ๐ช ๐ค =โ
? Thm [Mumโ65]: orbit closures donโt intersect iff โ ๐โโ ๐ ๐บ s.t. ๐ ๐ฃ โ ๐(๐ค) Suffices to eval. on random linear comb. of gen. of โ ๐ ๐บ How can we deterministically find such a polynomial? Is this the only way to solve it? Null-cone Problem: given ๐ฃโ๐, is 0โ ๐ช ๐ฃ ? How do these problems relate to PIT?
5
Invariant Theory and PIT
Input description: Group ๐, vector space ๐ given by natural encoding, 1 dim ๐ +dimโก(๐บ) Example: ๐ฎ=๐ฎ๐ณ ๐ , ๐ฝ=๐ด๐ ๐ ๐ (โ) and action ๐โ
๐จ=๐๐จ ๐ โ๐ Problems of interest: Null-cone problem OCI Efficiently (and succinctly) computing generators of โ ๐ฝ ๐ฎ Orbit Closure Containment (OCC) More generally we could talk about โexplicit varietiesโ but then we wonโt necessarily have invariant theory involved. So probably not good for this talk. Figure out a better theme for such a talk. Can we get a hierarchy of varieties? โSuccinctโ < โexplicitโ < โฆ Remarks: Null-cone problem and OCI witnessed by inv. Polynomials OCC seems much harder (Markusโ talk) Examples of OCC problems ๐ฝ๐ท ๐๐ ๐ฝ๐ต๐ท Border Rank
6
Invariant Theory and PIT
Basic structural questions (and results): Is โ ๐ฝ ๐ฎ finitely generated? Thm [Hilโ90, 93]: Yes! Upper bounds on degree of generators? Thm [Popovโ81, Derksenโ01]: exponential degree bounds! General construction of invariants? Reynolds operator (Cayley Omega, Casimir) Previous algorithms doubly exponential or exponential until Ketan came along and gave the right complexity theoretic notion of succinctness Remarks: Reynolds operator general, but not โefficientโ. For algs. need โsimple invariantsโ Hard to prove better degree bounds even for special cases Previous algs for Null Cone and OCI were doubly exponential
7
Invariant Theory and PIT
Succinct generators [Mulโ12]: โ ๐ฝ ๐ฎ has ๐-succinct generators, if there is a small circuit ๐ญ ๐, ๐ โ๐ such that ๐ญ ๐, ๐ = ๐ ๐ ๐ ๐ ๐ ๐ (๐) ๐ ๐ ๐ ๐ is a set of generators of โ ๐ฝ ๐ฎ ๐ ๐ ๐ ๐ are linearly independent If โ ๐ฝ ๐ฎ has ๐-succinct generators, then Null Cone and OCI can be solved by solving PIT for ๐! Circuit class C is a โnatural circuit classโ (i.e.) closed under restrictions, and for PIT purposes of polynomial degree. Note that for nullcone and OCI the polynomial is a polynomial only in the auxiliary variables y! Remark: enough to take C-succinct separators (where the f_iโs are separating invariants) To test if ๐ in null cone: test if ๐ญ ๐, ๐ โก๐ To test OCI, that is, ๐ ๐ โฉ ๐ ๐ โ โ
: test if ๐ญ ๐, ๐ โ๐ญ ๐, ๐ โก๐ Remark: analytic approach may sometimes not need degree bounds on the circuit class ๐ for certain problems. [GGOWโ16] solution to the null cone
8
Simultaneous Conjugation (SC)
Setup: group ๐บ=๐๐ฟ(๐), vector space ๐=๐๐ ๐ก ๐ โ ๐ ๐โ
๐ด 1 ,โฆ, ๐ด ๐ โ(๐ ๐ด 1 ๐ โ1 ,โฆ,๐ ๐ด ๐ ๐ โ1 ) Null Cone: ๐ด 1 ,โฆ, ๐ด ๐ โ๐ with rational entries OCI: ๐ด 1 ,โฆ, ๐ด ๐ , ( ๐ต 1 ,โฆ, ๐ต ๐ )โ๐ with rational entries Invariants [Proโ76, Razโ74, Forโ86]: generated by ๐ก๐ ๐ ๐ 1 โฏ ๐ ๐ โ , where 1โคโโค ๐ 2 , ๐ ๐ โ[๐] Have polynomial degree bounds! Is the set above succinct? Procesi, Razmyslov, Formanek
9
Simultaneous Conjugation (SC)
Invariants [Proโ76, Razโ74, Forโ86]: generated by ๐ก๐ ๐ ๐ 1 โฏ ๐ ๐ โ , where 1โคโโค ๐ 2 , ๐ ๐ โ[๐] Succinctness [Mulโ12, FSโ12]: ๐ ๐ = ๐ฆ ๐0 โ
๐ผ+ ๐โ[๐] ๐ฆ ๐๐ โ
๐ ๐ , 1โค๐โค ๐ 2 ๐น ๐ 1 ,โฆ, ๐ ๐ , ๐ฆ 10 ,โฆ ๐ฆ ๐ 2 ๐ = ๐ก๐ ๐ 1 โฏ ๐ ๐ 2 =โ โ ๐ฆ ๐ ๐ ๐ โ
๐ก๐ โ ๐ ๐ ๐ Procesi, Razmyslov, Formanek
10
Simultaneous Conjugation (SC)
Null Cone: ๐ด 1 ,โฆ, ๐ด ๐ โ๐ with rational entries OCI: ๐ด 1 ,โฆ, ๐ด ๐ , ( ๐ต 1 ,โฆ, ๐ต ๐ )โ๐ with rational entries Succinctness: ๐น ๐ 1 ,โฆ, ๐ ๐ , ๐ฆ 10 ,โฆ ๐ฆ ๐ 2 ๐ = ๐ก๐ ๐ 1 โฏ ๐ ๐ 2 =โ โ ๐ฆ ๐ ๐ ๐ โ
๐ก๐ โ ๐ ๐ ๐ OCI: by [Mumโ65] and succinctness, enough to check ๐น ๐ด 1 ,โฆ, ๐ด ๐ , ๐ฆ 10 ,โฆ ๐ฆ ๐ 2 ๐ โ๐น ๐ต 1 ,โฆ, ๐ต ๐ , ๐ฆ 10 ,โฆ ๐ฆ ๐ 2 ๐ โ 0 Polynomial above zero iff ๐ก๐ ๐ด ๐ 1 โฏ ๐ด ๐ โ =๐ก๐ ๐ต ๐ 1 โฏ ๐ต ๐ โ on all gen. [FSโ12]: polynomial above is ROABP over ๐ variables! [RSโ05] white-box PIT in P [FSโ12] black-box PIT in quasi-P Procesi, Razmyslov, Formanek Perhaps mention here that FS does not provide a separating invariant in their algorithm.
11
Left-Right (LR) Action
Setup: group ๐บ=๐๐ฟ ๐ ร๐๐ฟ(๐), vector space ๐=๐๐ ๐ก ๐ โ ๐ (๐,โ)โ
๐ด 1 ,โฆ, ๐ด ๐ โ(๐ ๐ด 1 โ โ1 ,โฆ,๐ ๐ด ๐ โ โ1 ) Null Cone: ๐= ๐ด 1 ,โฆ, ๐ด ๐ โ๐ with rational entries OCI: ๐= ๐ด 1 ,โฆ, ๐ด ๐ , ๐ฉ=( ๐ต 1 ,โฆ, ๐ต ๐ )โ๐ with rational entries Invariants [DWโ00, SvdBโ01, DZโ01,DMโ16, IQSโ16]: generated by ๐ ๐ ๐ (๐
) ,๐ฟ =๐๐๐ก ๐โ[๐] ๐ ๐ (๐) โ ๐ ๐ , ๐ ๐ (๐) โ๐๐ ๐ก ๐ โ , ๐โค ๐ 5 PIT question: ๐โ๐ iff there is ๐โค ๐ 5 s.t. ๐ ๐ ๐ 1 ๐ ,โฆ, ๐ 1 ๐ ,๐จ โ ๐ ๐ ๐ 1 ๐ ,โฆ, ๐ 1 ๐ ,๐ฉ โ 0 ๐โ[ ๐ 5 ] ๐ ๐ ๐ 1 ๐ ,โฆ, ๐ 1 ๐ ,๐จ โ ๐ ๐ ๐ 1 ๐ ,โฆ, ๐ 1 ๐ ,๐ฉ โ
๐ง ๐ โ 0 Derksen Weyman 2000 Domokos Zubkov 2001 Schoefield van der Bergh 2001
12
LR Action โ Null Cone Setup: group ๐บ=๐๐ฟ ๐ ร๐๐ฟ(๐), vector space ๐=๐๐ ๐ก ๐ โ ๐ (๐,โ)โ
๐ด 1 ,โฆ, ๐ด ๐ โ(๐ ๐ด 1 โ โ1 ,โฆ,๐ ๐ด ๐ โ โ1 ) Null Cone: ๐= ๐ด 1 ,โฆ, ๐ด ๐ โ๐ with rational entries Analytic algorithm [Gurโ04, GGOWโ16]: decide membership in the null cone in poly-time. No need for upper bound on the degree of invariants! Algebraic algorithm [IQSโ16]: decide membership in the null-cone in poly-time. In particular, if ๐ not in null cone finds ๐ 1 ๐ ,โฆ, ๐ 1 ๐ such that ๐ ๐ ๐ 1 ๐ ,โฆ, ๐ 1 ๐ ,๐จ โ 0 In the IQS: need to put the d \in {n-1, n} condition somewhere
13
LR Action โ OCI via reduction [DMโ18]
Setup: group ๐บ=๐๐ฟ ๐ ร๐๐ฟ(๐), vector space ๐=๐๐ ๐ก ๐ โ ๐ (๐,โ)โ
๐ด 1 ,โฆ, ๐ด ๐ โ(๐ ๐ด 1 โ โ1 ,โฆ,๐ ๐ด ๐ โ โ1 ) OCI: ๐ด 1 ,โฆ, ๐ด ๐ , ( ๐ต 1 ,โฆ, ๐ต ๐ )โ๐ with rational entries We know OCI for SC. Could we reduce OCI for LR-action to SC? Reduction [DMโ18]: OCI for LR-action is equivalent to OCI for SC under poly-time reductions. Easy direction: OCI for SC โค ๐ OCI for LR-action. Pf: ๐ด 1 ,โฆ, ๐ด ๐ โ ๐๐ถ ( ๐ต 1 ,โฆ, ๐ต ๐ ) iff ๐ผ, ๐ด 1 ,โฆ, ๐ด ๐ โ ๐ฟ๐
(๐ผ, ๐ต 1 ,โฆ, ๐ต ๐ ) Derksen Makam 2018 Hard direction (some easy facts): can assume that det ๐ด ๐ = det ๐ต ๐ โ๐โ[๐]. OCI problem doesnโt change if replace input with another elt. from same orbit
14
LR Action โ Reduction to SC [DMโ18]
Harder direction: OCI for LR-action โค ๐ OCI for SC. Easy case: ๐ด 1 ,โฆ, ๐ด ๐ in the null cone. In this case OCI is equivalent to Null Cone problem. By [GGOWโ16, IQSโ16] solve this in P Another easy case: det A 1 โ 0 then ๐ด 1 ,โฆ, ๐ด ๐ โ ๐ฟ๐
๐ต 1 ,โฆ, ๐ต ๐ iff ๐ผ, ๐ด 1 โ1 ๐ด 2 ,โฆ, ๐ด 1 โ1 ๐ด ๐ โ ๐ฟ๐
(๐ผ, ๐ต 1 โ1 ๐ต 2 ,โฆ, ๐ต 1 โ1 ๐ต ๐ )โ ๐ด 1 โ1 ๐ด 2 ,โฆ, ๐ด 1 โ1 ๐ด ๐ โ ๐๐ถ ( ๐ต 1 โ1 ๐ต 2 ,โฆ, ๐ต 1 โ1 ๐ต ๐ ) Easy to adapt to case where ๐ ๐๐๐( ๐ด ๐ ) has invertible matrix* Derksen Makam 2018 Note that B_1 will also be invertible because we assume that det(A_i) = det(B_i) for all I (*) And we know how to obtain this matrix Remaining case: ๐ด 1 ,โฆ, ๐ด ๐ , ( ๐ต 1 ,โฆ, ๐ต ๐ ) not in null cone and donโt span an invertible matrix. Plan: reduce to the previous case (find inv. matrix) Need to use blow-ups
15
LR Action โ Reduction to SC [DMโ18]
Blow-ups: ๐= ๐ด 1 ,โฆ, ๐ด ๐ in ๐๐ ๐ก ๐ โ ๐ , its ๐ ๐กโ -order blow-up is ๐จ ๐ = ๐จ ๐ โ ๐ฌ ๐๐ , ๐โ ๐ ; ๐,๐โ[๐] Lemma [DMโ18]: ๐, ๐โ๐๐ ๐ก ๐ โ ๐ with rational entries, ๐โฅ๐โ1 ๐ โ ๐ณ๐น ๐โ ๐จ ๐ โ ๐ณ๐น ๐ฉ ๐ Remaining case: ๐, ๐ not in null cone and det ๐ด ๐ = det ๐ต ๐ =0 for all ๐โ ๐ . ๐ not in null cone then there is ๐ ๐ (๐โ1) โ๐๐ ๐ก ๐โ1 โค s.t. ๐๐๐ก ๐โ[๐] ๐ ๐ (๐โ1) โ ๐ด ๐ โ 0 In particular, ๐ ๐งโ๐ has an invertible element Using lemma reduce blown-up instance to SC Derksen Weyman 2000 Domokos Zubkov 2001 Schoefield van der Bergh 2001
16
OCI for LR-action (Analytic Result) - Outline
[AGLOWโ18]: decide OCI for LR-action in poly-time. Analytic alg. Now polynomial bounds on the degree of invariants needed! Outline: Scaling to DS takes us to elt of min norm in closures Let ๐ฏ and ๐ be elts of min norm in ๐ถ ๐ and ๐ถ ๐ By [KNโ79] ๐ถ ๐ and ๐ถ ๐ intersect iff ๐ฏ and ๐ are equivalent under โrotationsโ (maximal compact subgroup) Test if ๐ฏ and ๐ are equivalent under โrotationsโW Too much to introduce in this talk Remark: analytic approach only gives us approximate minimizers, so need to do approximation version of steps 1-4
17
? Thank you! Open Questions
Create a complexity theory of the computational problems in invariant theory [DMโ18] showed that the OCI for SC equivalent to OCI for LR-action Complete problems? More applications? Analytic methods vs algebraic methods what are their powers and limitations? Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.