Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trigonometry – Without a Calculator – Demonstration

Similar presentations


Presentation on theme: "Trigonometry – Without a Calculator – Demonstration"— Presentation transcript:

1 Trigonometry – Without a Calculator – Demonstration
This resource provides animated demonstrations of the mathematical method. Check animations and delete slides not needed for your class.

2 Trigonometry Without a Calculator
SOH CAH TOA Trigonometry Without a Calculator What are the hidden 3 lengths and 1 angle? 30° 2 45° 2 2 1 3 45° 60° 1 1 2

3 SOH CAH TOA Trigonometry Without a Calculator What trigonometric values can we calculate? 30° 2 45° 2 2 1 3 45° 60° 1 1 2 sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = cos 60° = 1 2 tan 60° = = 3 tan 45° = 1 1 =1

4 1 0° 1 Trigonometry Without a Calculator
1 In a hypothetical triangle where one angle is 0°, the hypotenuse is equal to the adjacent side. sin 0° = 0 1 =0 cos 0° = 1 1 =1 tan 0° = 0 1 =0

5 sin 30° = 6 𝑥 = 1 2 𝑥 6 cm 6= 𝑥 2 30° 12=𝑥 DEMO sin 45° = 1 2
cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = tan 60° = = 3 cos 60° = 1 2 tan 45° = 1 1 =1 sin 30° = 6 𝑥 = 1 2 𝑥 6 cm 6= 𝑥 2 30° 12=𝑥

6 cos 45° = 6 𝑥 = 1 2 𝑥 6= 𝑥 2 45° 6 cm 6 2 =𝑥 DEMO sin 45° = 1 2
tan 30° = cos 45° = 1 2 sin 60° = tan 60° = = 3 cos 60° = 1 2 tan 45° = 1 1 =1 cos 45° = 6 𝑥 = 1 2 𝑥 6= 𝑥 2 45° 6 cm 6 2 =𝑥

7 denominator & simplify.
DEMO sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = tan 60° = = 3 cos 60° = 1 2 tan 45° = 1 1 =1 tan 60° = 12 𝑥 = 3 12=𝑥 3 60° 𝑥 =𝑥 12 cm Rationalise the denominator & simplify. 4 3 =𝑥

8 denominator & simplify.
DEMO sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = tan 60° = = 3 cos 60° = 1 2 tan 45° = 1 1 =1 = 1 2 sin 45° = 𝑥 4 4 cm 𝑥 𝑥= 4 2 45° Rationalise the denominator & simplify. 𝑥=2 2

9 denominator & simplify.
DEMO sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = tan 60° = = 3 cos 60° = 1 2 tan 45° = 1 1 =1 = sin 60° = 9 𝑥 𝑥 60° 9= 𝑥 3 2 18=𝑥 3 9 cm Rationalise the denominator & simplify. =𝑥 =6 3

10 Use the equilateral and isosceles triangles
to first find trigonometric values, to then find the missing lengths. Keep your answers in surd form. 2 2 1 𝒂 1 2 7 cm 30° 10 cm 𝒄 8 cm 𝒅 60° 45° 30° 6 cm 𝒃

11 2 2 1 𝑎=14 cm 𝑎 1 2 7 cm 30° 10 cm 𝑐=8 2 cm 𝑐 8 cm 𝑑=2 3 cm 𝑑 60° 45°
Use the equilateral and isosceles triangles to first find trigonometric values, to then find the missing lengths. Keep your answers in surd form. 2 2 1 𝑎=14 cm 𝑎 1 2 7 cm 30° 10 cm 𝑐=8 2 cm 𝑐 8 cm 𝑑=2 3 cm 𝑑 60° 45° 30° 6 cm 𝑏=5 cm 𝑏

12 30° 2 45° 2 2 1 3 45° 60° 1 1 2 Trigonometry Without a Calculator
What trigonometric values can we calculate? 30° 2 45° 2 2 1 3 45° 60° 1 1 2 sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = cos 60° = 1 2 tan 60° = = 3 tan 45° = 1 1 =1

13 30° 2 45° 2 2 1 3 45° 60° 1 1 2 Trigonometry Without a Calculator
What trigonometric values can we calculate? 30° 2 45° 2 2 1 3 45° 60° 1 1 2 sin 45° = 1 2 cos 30° = sin 30° = 1 2 tan 30° = cos 45° = 1 2 sin 60° = cos 60° = 1 2 tan 60° = = 3 tan 45° = 1 1 =1

14

15 tom@goteachmaths.co.uk Questions? Comments? Suggestions?
…or have you found a mistake!? Any feedback would be appreciated . Please feel free to


Download ppt "Trigonometry – Without a Calculator – Demonstration"

Similar presentations


Ads by Google