Download presentation
Presentation is loading. Please wait.
1
Error Sensitivity in MEIC
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Sep 15, 2015 F. Lin
2
Contents Why do we need error study Lattice used for error study
Steps of error study Error study of misalignment, strength error, BPM noise Error study of multipole field error of magnets Error study of FFQ (Final Focus Quadrupole) Summary & Questions
3
Lattice used for error study
For Vasiliy, I got two CCB lattices CCB lattice-June18 CCB lattice-July28
4
Lattice used for error study
For Vasiliy, I got two CCB lattices CCB lattice-June18 CCB lattice-July28
5
Lattice used for error study
Dynamic Aperture of ΔP/P (-0.3%, +0.3%) CCB lattice-July28 has better DA at ΔP/P = +0.3 %
6
Steps of error study With a survey of error studies of PEP-II, KEKB, SuperB, NSLS-II, RHIC, and J-PARC, and comments given by Yuri and Mike, etc, an error study is started for the MEIC ion ring. Steps: Basic errors study on strength error of normal magnets, misalignment, BPM noise, to get a limit toleration for magnet error and alignment Multipole error of normal magnets & FFQ Coupling, RF Error in ramping time 4. Other things: injection DA, collective effect, collision
7
Steps of error study Basic error in step 1:
Magnet: misalignment of 3-D, x-y rotation, and strength error FFQ: error neglected in the initial study, to keep (x=x’=0 & y=y’=0) & nonlinear IP FFQ in KEKB study: 10 % of normal Quads IPAC14’ MOPRO005, V.S. Morozov,etc
8
Steps of error study BPM: only noises of X and Y direction Considering calibration and beam based alignment Corrector: only x-y rotation error & jitter error of strength. only kicker function, no multipole error Error: Gaussian distributions with a cut-off at 3 standard deviations. Dipole Quadrupole Sextupole BPM(noise) Corrector x misalignment(mm) 0.1 0.02 - y misalignment(mm) x-y rotation(mrad) s misalignment(mm) Strength error(%) 0.01
9
Before Correction, Basic error
After Correction, Basic error Before Correction, Basic error ×2 After Correction, Basic error ×2
10
Error study of misalignment, strength error, BPM noise
11
Error study of misalignment, strength error, BPM noise
Closed orbit oscillation mainly caused by: Q X&Y misalignment K0 error of dipole Longitudinal misalignment of dipole.
12
Error study of misalignment, strength error, BPM noise
Dynamic aperture shrinking mainly caused by: K1 error of Quads Tilt error of Quads X&Y misalignment of Sextupoles X&Y misalignment of Quadrupoles 1. & 3. twiss, tune, & chromaticity matching 2. decoupling
13
slac-r-418a-PEPII: PEPII CDR June 1993
Multiple errors of PEPII are used in the study.
14
Error in ELEGANT The magnet multipole tolerance is defined relative to the field component normalized at a reference radius r: ( By Min-Huey Wang) ∆ 𝐵 𝑛 𝐵 𝑁 = (𝑁−1)! 𝐵 (𝑛−1)′ (𝑛−1)! 𝐵 (𝑁−1)′ 𝑟 𝑛−𝑁 , 𝐵 (𝑛−1)′ = 𝜕 𝑛−1 𝐵 𝜕 𝑛−1 𝑥 Multipole errors of dipole at radius 30 mm multipole type ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 systematic 1.0e−5 Random 3.2e−5 6.4e−5 8.2e−5 Multipole errors of quadrupole at radius 44.9 mm ∆ 𝐵 3 𝐵 2 ∆ 𝐵 4 𝐵 2 ∆ 𝐵 5 𝐵 2 ∆ 𝐵 6 𝐵 2 ∆ 𝐵 10 𝐵 2 ∆ 𝐵 14 𝐵 2 1.03e−3 5.6e−4 4.8e−4 2.37e−3 -3.10e−3 -2.63e−3 3.2e−4 4.5e−4 1.9e−4 1.7e−4 1.8e−4 7.0e−5 Multipole errors of sextupole at radius mm ∆ 𝐵 5 𝐵 3 ∆ 𝐵 7 𝐵 3 ∆ 𝐵 9 𝐵 3 ∆ 𝐵 15 𝐵 3 −1.45e−2 −1.3e−2 2.2e−3 1.05e−3
15
Multipole errors of quadrupole at radius 44.9 mm
Error in ELEGANT The magnet multipole tolerance is defined relative to the field component normalized at a reference radius r: ( By Min-Huey Wang) ∆ 𝐵 𝑛 𝐵 𝑁 = (𝑁−1)! 𝐵 (𝑛−1)′ (𝑛−1)! 𝐵 (𝑁−1)′ 𝑟 𝑛−𝑁 , 𝐵 (𝑛−1)′ = 𝜕 𝑛−1 𝐵 𝜕 𝑛−1 𝑥 ELEGANT Quadrupole & Sextupole: 𝑎 𝑛 = 𝐾 𝑛 𝑟 𝑛 /(𝑛)! 𝐾 𝑚 𝑟 𝑚 /(𝑚)! Multipole errors of quadrupole at radius 44.9 mm multipole type ∆ 𝐵 3 𝐵 2 ∆ 𝐵 4 𝐵 2 ∆ 𝐵 5 𝐵 2 systematic 1.03e−3 5.6e−4 4.8e−4 Random 3.2e−4 4.5e−4 1.9e−4 ∆ 𝐵 6 𝐵 2 ∆ 𝐵 10 𝐵 2 ∆ 𝐵 14 𝐵 2 2.37e−3 -3.10e−3 -2.63e−3 1.7e−4 1.8e−4 7.0e−5
16
Multipole errors of dipole at radius 30 mm
Error in ELEGANT The magnet multipole tolerance is defined relative to the field component normalized at a reference radius r: ( By Min-Huey Wang) ∆ 𝐵 𝑛 𝐵 𝑁 = (𝑁−1)! 𝐵 (𝑛−1)′ (𝑛−1)! 𝐵 (𝑁−1)′ 𝑟 𝑛−𝑁 , 𝐵 (𝑛−1)′ = 𝜕 𝑛−1 𝐵 𝜕 𝑛−1 𝑥 ELEGANT Dipole: Multipole errors of dipole at radius 30 mm multipole type ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 systematic 1.0e−5 Random 3.2e−5 6.4e−5 8.2e−5 𝑏 𝑛 = (𝑛)! 𝑟 𝑛 ∆ 𝐵 𝑛+1 𝐵 1
17
Error study of multipole field error
Baseline of Dynamic Aperture at IP 10 σ of X & Y beam sizes
18
Error study of FFQ According to error study in KEKB, follow errors of Final Focus Quadrupole (FFQ) are used in error study Normal Quadrupole FFQ x misalignment(mm) 0.1 0.01 y misalignment(mm) x-y rotation(mrad) 0.05 s misalignment(mm) Strength error(%)
19
Error study of FFQ Dynamic aperture shrinking
Basic error ~ 3 % Multipole error ~ 10 % FFQ error ~ 15 % Dynamic aperture shrinking Basic error ~ 10 % Multipole error ~ 10 % FFQ error ~ 20 %
22
Lattice –I from SLAC Δp/p=0 Δp/p= 0.3% Δp/p=-0.3%
23
Lattice –I from SLAC Δp/p=0 Δp/p= 0.3% Δp/p=-0.3%
24
error considered Magnet: misalignment of 3-D, x-y rotation, strength error, BPM noise Multipole error FFQ error Only orbit correction
25
Lattice –I from SLAC With error & orbit correction Δp/p=0 Δp/p= 0.3%
26
Summary error considering:
Magnet: misalignment of 3-D, x-y rotation, strength error, BPM noise Multipole error FFQ error CCB lattice-July & Non-interleaved –I lattice have been studied with errors and only orbit correction
27
Summary Works next (considering Min-Huey’s ErrorCorrectionScheme):
Decoupling design with skew quadrupoles Correct beta beat in both planes Correct vertical dispersion ? Only in IP area? Correct chromaticity ? W function or only ξx ξy ? correct tune
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.